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Abstract

Constructions of data driven ordering of set of multivariate observations are presented.
The methods employ also dissimilarity measures. The ranks are used in the construction
of test statistics for location problem and in the construction of the corresponding multiple
comparisons rule. An important aspect of the resulting procedures is that they can be
used also in the multisample setting and in situations where the sample size is smaller
than the dimension of the observations. The performance of the proposed procedures is
illustrated by simulations.
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1. Introduction

The nonparametric test statistics (based on ranks) for testing the equality of the location
parameters of one-dimensional statistical populations have universal applicability. This is
because in the continuous case under the validity of the null hypothesis they have exact
distribution not depending on the sampled distribution and therefore in such a case they
yield chosen significance level. Nonparametric test statistics aimed at testing the equality of
location parameters of the multivariate populations usually provide the chosen significance
level only in the asymptotic sense, i.e., they attain the significance level only in the limit as
the sample sizes tend to infinity. Although simulations based on sampling from particular
populations yield some picture of the coincidence of the size of such a test with the chosen
significance level, the disadvantage is that the user does not have a guaranteed information
about this coincidence in the case when the distribution does not belong to the probability
families included in the simulation study.

In this paper ranks of multivariate observations are constructed and they are used in construc-
tion of tests of the equality of location parameters of multivariate populations. These tests are
based on the use of the classical rank statistics. Under validity of the null hypothesis, similarly
as in the classical one-dimensional case, for sampling from continuous multivariate population
the proposed ranks are uniformly distributed, the resulting test statistics possess an exact null
distribution and yield tests providing the chosen significance level. Moreover, these tests can
be used for testing the multivariate location hypothesis also when the dimensionality of the
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data is greater than the sample size.

A general construction of the ranks of multivariate vectors is the topic of Subsection 2.1, ranks
constructed by means of a random vector are mentioned in Subsection 2.2, the main result of
the paper, the ranks constructed by means of a dissimilarity, are presented in Subsection 2.3.
The multivariate 2-sample Wilcoxon tests based on the results from Section 2 are described
in Subsection 3.1, their simulation power comparison with known nonparametric 2-sample
location tests is in Subsection 3.2. Multisample tests of location in the small sample setting
are briefly mentioned in Subsection 3.3. All simulation results of the paper are based on
the use of MATLAB. The conclusions are in Section 4, the computation of the Friedman
projection pursuit vector based on the the spherical coordinates is mentioned in Section 4.

2. Ranks of multivariate observations

The existence of the exact null distribution of the classical rank statistics in the one-dimen-
sional case follows from the fact the ranks of the random sample from continuous univariate
distribution are uniformly distributed over the corresponding set of permutations. The ranks
of real valued observations are based on ordering according to their magnitude. Some possible
principles of ordering multivariate data are discussed by Barnett (1976). As there is not known
any natural ordering of the multivariate Euclidean space yielding useful statistical procedures,
the successes of ranking in the one-dimensional case suggest that some data driven ordering
of elements of random sample of size n, i.e, not the 2-vector based but an n-vector based
relation, could be helpful. In this paper both the ranks computed by means of the scalar
product with a random vector, and ranks based on a dissimilarity, are presented. These
constructions, similarly as in the one-dimensional case, lead to statistics having an exact null
distribution.

2.1. A general construction

The purpose of this Subsection is to present a basis for definition of ranks in the multivariate
case.

Let Rd denote the Euclidean space of d-dimensional column vectors. Throughout the paper
we assume that d > 1 and the integer n ≥ 5. We shall use the notation

R(d,n) = {(x1, . . . ,xn); xi ∈ Rd, i = 1, . . . , n},
R̃(d,n) = {(x1, . . . ,xn) ∈ R(d,n); x1, . . . ,xn are mutually different vectors}.

In this paper we shall often use the fact that if c ∈ Rm is a non-zero vector, then the set of
the z’s for which c′z = 0, has the multivariate Lebesgue measure zero. By means of this it is

obvious that the multivariate Lebesgue measure µ
(d,n)
L of the set R(d,n) − R̃(d,n) equals zero.

As usual, by R(n) we understand the set of all permutations of the integers 1, . . . , n.

Theorem 2.1.1. Suppose that

Dn ⊂ R̃(d,n), (x1, . . . ,xn) ∈ Dn whenever (xr1 , . . . ,xrn) ∈ Dn for some r ∈ R(n),

µ
(d,n)
L (R̃(d,n) −Dn) = 0,

(2.1.1)

where µ
(d,n)
L denotes the multivariate Lebesgue measure on R(d,n). Let for each x = (x1, . . . ,xn)

belonging to Dn there exist a unique n-tuple

x(.) = (x(1),x(2), . . . ,x(n)) ∈ Dn, {x(1),x(2), . . . ,x(n)} = {x1, . . . ,xn} (2.1.2)

such that x(.) is a measurable mapping of the argument (x1, . . . ,xn) and

(x1, . . . ,xn), (x̃1, . . . , x̃n) ∈ Dn, {x1, . . . ,xn} = {x̃1, . . . , x̃n} =⇒ x(i) = x̃(i), i = 1, . . . , n.
(2.1.3)
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For x = (x1, . . . ,xn) ∈ Dn define the vector of ranks R = R(x1, . . . ,xn) = (R1, . . . , Rn) with
values in R(n) by the formula

Ri = Ri(x) = Ri(xi) = ri if xi = x(ri). (2.1.4)

Let X1, . . . ,Xn be a sequence of d-dimensional random vectors which has a density with respect
to the multivariate Lebesgue measure. Then the random matrix (X1, . . . ,Xn) ∈ Dn with
probability 1 and consequently, the vector of ranks R(X1, . . . ,Xn) is uniquely defined almost
surely. Moreover, if in addition to this assumption the sequence (Xr1 , . . . ,Xrn) has the same
distribution for every permutation r ∈ R(n), then for the vector of ranks R = R(X1, . . . ,Xn)
the equality P (R = r) = 1/n! holds for each permutation r ∈ R(n).

Proof. The proof is analogous to the proof for classical one-dimensional case d = 1, handled
by Hájek, Šidák, and Sen (1999). Since (2.1.1) holds and X = (X1, . . . ,Xn) has a density
with respect to the multivariate Lebesgue measure, (X1, . . . ,Xn) ∈ Dn almost surely and
consequently, R(X) is uniquely defined almost surely. Obviously, R : Dn −→ R(n) is a
measurable mapping. Now let us assume that the distribution of (Xr1 , . . . ,Xrn) is the same
for every permutation r ∈ R(n). Let a permutation r ∈ R(n) be arbitrary, but fixed. Put
Yi = Xr−1

i
, i = 1, . . . , n. Then X and Y = (Y1, . . . ,Yn) are equally distributed. Let

eid = (1, 2, . . . , n) denote the identical permutation from R(n). Since R(X) = r if and only
R(Y) = eid, we have

P (R(X) = r) = P (R(Y) = eid) = P (R(X) = eid),

and by means of this the rest of the proof can be simply carried out.

2.2. Ranks constructed by means of a random vector

In this Subsection we deal with construction of ranks by means of the scalar products of
observations with a vector which is a function of these observations. Thus in difference from
Fraiman, Moreno, and Vallejo (2017), where the multiplying vectors are chosen randomly and
yield randomized tests with which various statisticians may come to various conclusions with
the same data, the tests presented in this Subsection are not randomized.

Theorem 2.2.1. Let X1, . . . ,Xn be a sequence of d-dimensional random vectors which has
a density with respect to the multivariate Lebesgue measure. Suppose that c : R(d,n) → Rd
is a measurable mapping and there exists a set Dn fulfilling (2.1.1) such that the equality
c(x1, . . . ,xn) = c(xr1 , . . . ,xrn) holds for each (x1, . . . ,xn) ∈ Dn and each permutation r ∈
R(n). For x = (x1, . . . ,xn) ∈ Dn define

xi1 ≺ xi2 if either c(x)>xi1 < c(x)>xi2 or
c(x)>xi1 = c(x)>xi2 and xi1(`) < xi2(`), ` = min{k; |xi1(k)− xi2(k)| > 0}. (2.2.1)

Let

x(1) ≺ x(2) ≺ . . . ≺ x(n) (2.2.2)

denote this ordering of x1, . . . ,xn. Then the relations (2.1.2), (2.1.3) hold and if the sequence
(Xr1 , . . . ,Xrn) has the same distribution for every permutation r ∈ R(n), the vector of ranks
R = R(X1, . . . ,Xn) = (R1, . . . , Rn) computed by means of (2.1.4) has the properties described
in Theorem 2.1.1.

Proof. Since µ
(d,n)
L (R(d,n)−Dn) = 0 by (2.1.1), and the random matrix (X1, . . . ,Xn) possesses

a density with respect to µ
(d,n)
L , the equality P ((X1, . . . ,Xn) ∈ Dn) = 1 holds. Hence denoting

x(1) ≺ · · · ≺ x(n) the set {x1, . . . ,xn} ⊂ Dn in the increasing order, one can easily carry out
the proof by means of Theorem 2.1.1.
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2.3. Ranks based on a dissimilarity

While the ranks constructed in the previous Subsection are based on the scalar product of
a random vector with the observed data, now we are going to propose a construction of the
ranks by means of a dissimilarity.

In the next procedure the order statistics x(.) are constructed in such a way that we compute
(step by step) lower indexes (`1, . . . , `m) and upper indexes (hn−m, . . . , h1). The result of the
computation (i1, . . . , in) = (`1, . . . , `m, hn−m, . . . , h1) is a permutation of 1, . . . , n, the order
statistics will be x(j) = xij and the ranks are determined by (2.1.4). In doing this also the
nearest neighbors classification algorithm will be used. Its decision rule is based on a critical
constant k = k(N), where N is the number of the elements of the training set (more on this
in the text following the next construction). This construction will be formulated in a general
form by means of a dissimilarity measure.

By the dissimilarity measure we understand a function t : Rd → 〈0,∞) such that t(x) = t(−x)
for all x and t(x) = 0 for x = 0. Throughout the text for z = (z1, . . . , zd)

> ∈ Rd

z(j) = πj(z) = zj (2.3.1)

denotes the j-th coordinate of the vector.

Let us assume that t is a fixed dissimilarity and

u : Rd → Rd (2.3.2)

is a measurable mapping. For x1, . . . ,xn belonging to Rd, n ≥ 5 compute

u =
1

n

n∑
i=1

ui, V =
1

n

n∑
i=1

(ui − u)(ui − u)>, (2.3.3)

where ui = u(xi). Let c̃ = c̃(x1, . . . ,xn) be a non-zero characteristic vector corresponding to
the largest characteristic root of V. Put

c = c(c̃) =


c̃ if

∑d
j=1 c̃(j) > 0,

c̃ if
∑d

j=1 c̃(j) = 0 and c̃(j̃) > 0, j̃ = min{j; |c̃(j)| > 0},
−c̃ otherwise.

(2.3.4)

As the observations may be subjected to some rounding of the values, for xi1 , xi2 ∈ Rd
consider the following inequalities, which serve as a basis for the breaking rule (2.3.13)–
(2.3.16).

d∑
j=1

πj

(
u(xi1)

)
6=

d∑
j=1

πj

(
u(xi2)

)
, (2.3.5)

d∑
j=1

πj(xi1) 6=
d∑
j=1

πj(xi2), (2.3.6)

‖xi1‖ 6= ‖xi2‖, (2.3.7)

πj(xi1) 6= πj(xi2) for some j. (2.3.8)

Here ‖xi‖ =
√

x′ixi1 denotes the usual Euclidean norm. In the construction of the ordering
of the data we shall use the constraint

the numbers c>ui, i = 1, 2, . . . , n are mutually different (2.3.9)

and put

D(sp)
n =

{
(x1, . . . ,xn) ∈ R(d,n); either (2.3.9) is fulfilled or for each integers 1 ≤ i1 < i2 ≤ n

some of the inequalities (2.3.5) - (2.3.8) holds

}
(2.3.10)
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where the superscript (sp) is used to express that the constraints (2.3.9) concern the spe-

cial chosen mapping (2.3.2). Assume that (x1, . . . ,xn) ∈ D(sp)
n and compute the matrix of

dissimilarities

dM(i, j) =

{
t(ui − uj) i 6= j,

0 i = j.
(2.3.11)

Step 1. Put

c>ui ≺ c>uj if c>ui < c>uj
or c>ui = c>uj and one of the following possibilities holds:

(2.3.12)∑
k

πk(ui) <
∑
k

πk(uj), (2.3.13)∑
k

πk(ui) =
∑
k

πk(uj) and
∑
k

πk(xi) <
∑
k

πk(xj), (2.3.14)∑
k

πk(ui) =
∑
k

πk(uj),
∑
k

πk(xi) =
∑
k

πk(xj) and ‖xi‖ < ‖xj‖, (2.3.15)∑
k

πk(ui) =
∑
k

πk(uj),
∑
k

πk(xi) =
∑
k

πk(xj) ,

‖xi‖ = ‖xj‖ and π`(xi) < π`(xj), ` = min{k;πk(xi) 6= πk(xj).

 (2.3.16)

It follows from the definition of the set D(sp)
n that this binary relation orders these scalar

products linearly. Thus we obtain the ordering

c>ui1 ≺ c>ui2 ≺ . . . ≺ c>uin (2.3.17)

of the numbers c>ui. By means of this compute

m = max(0.1n, 2), low = (i1, i2, . . . , im), up = (in−m+1, in−m+2, . . . , in). (2.3.18)

Step II. Loosely speaking, the new set low will be constructed by adding index j of the
observation uj (classified by the nearest neighbors rule as belonging to the observations with
indexes from low) which is the most distant from the upper set, to the indexes in low. The
new upper set will be constructed analogically.

To do this, suppose that we have already constructed the vectors of lower and upper indexes

low = (i1, . . . , is), up = (in−h+1, in−h+2, . . . , in).

The corresponding lower and upper observations are

Ulow = (ui1 , . . . ,uis), Uup = (uin−h+1
, . . . ,uin) (2.3.19)

and the set of the remaining indexes

rem = {j ∈ {1, . . . , n}; j /∈ (low
⋃
up)} = {j1, . . . , jg}, g = n− (s+ h).

Hence s + h is the number of the chosen indexes, which will be used in the following clas-
sification in the training sets. For i = 1, . . . , g compute the result of the nearest neighbors
classification rule

clas(ji) = clasNN
(
k(s+ h),Ulow,Uup,uji

)
,

based on the computed dissimilarities (2.3.11) (a detailed explanation is in the text following
the end of this construction). Thus the index ji is classified to the lower indexes if clas(ji) = 1
and to the upper indexes if clas(ji) = 2. Further, compute (cf. (2.3.11))

preLow = {j ∈ rem; clas(j) = 1}, sumUp(j) =
∑
i∈up

dM(j, i)
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and find the set

Jlow = {j∗ ∈ preLow; sumUp(j∗) = max
j∈preLow

sumUp(j)}.

Let Jlow = {j∗1 , . . . , j∗` }. Write JJlow = (j∗1) if ` = 1, otherwise order the set Jlow in such way
that (cf. (2.3.17))

c>uj∗1 ≺ . . . ≺ c>uj∗`

and put JJlow = j∗1 .

Similarly, let

preUp = {j ∈ rem; clas(j) = 2}, sumLo(j) =
∑

i∈low dM(j, i),

Jup = {j̃ ∈ preUp; sumLo(j̃) = max
j∈preLow

sumLo(j)},

Jup = {j̃1, . . . , j̃a}, c>uj̃1 ≺ . . . ≺ c>uj̃a

JJup = j̃a,

of course if the set Jup consists of one element then a = 1.

Now define

newLow =

{
(low, JJlow) preLow 6= ∅,

low otherwise,

newUp =

{
(JJup, up) preUp 6= ∅,

up otherwise.

To finish this step, put

low = newLow, up = newUp.

Step III. Repeat Step II while the number of the elements in (low, up) is less than n.

After finishing this procedure we obtain the vector (low, up) = (i1, . . . , in), which is a permu-
tation of 1, . . . , n. The resulting order statistics are

x(.) = (x(1), . . . ,x(n)), x(j) = xij , j = 1, . . . , n. (2.3.20)

To avoid possible ambiguities in the further use of this construction let us explain in detail
the nearest neighbors classification rule used in the previous text. Let low = (i1, . . . , is),
up = (in−h+1, in−h+2, . . . , in), z be mutually different integers from the set {1, . . . , n} and k
is a positive integer. The dissimilarity t based nearest neighbors classification (cf. (2.3.19))

y = clasNN
(
k,Ulow,Uup,uz

)
(2.3.21)

of the vector uz is defined as follows. Use the matrix (2.3.11) and put vi = dM(i, z), i ∈
low

⋃
up. Let c be the vector from (2.3.4). Define

vi ≺ vj if vi < vj or vi = vj and c>ui ≺ c>uj in the sense (2.3.12) – (2.3.16). (2.3.22)

It follows from the definition of the set D(sp)
n that this binary relation orders the numbers vi,

i ∈ low
⋃
up, linearly. Thus we obtain the ordering

v(1) ≺ v(2) ≺ . . . ≺ v(s+h)

of the numbers vi. Use the constant k postulated in (2.3.21) and put

h(1) = #{f ∈ {1, . . . , k}; v(f) = vi for some i ∈ low },
h(2) = #{f ∈ {1, . . . , k}; v(f) = vi for some i ∈ up }.
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Then y = 1 if h(1) > h(2) (i.e, in this case uz is added to Ulow), and y = 2 if h(1) < h(2)
(now uz is added to Uup). If h(1) = h(2), use this procedure with k + 1 instead of k.

The constant k is in the rule (2.3.21) chosen in dependence on the number N = s+ h of the
elements ui, i ∈ low

⋃
up, of the training set. In general, there are no tables containing a

prescription how to choose this constant. It is known that it should be chosen in such a way
that k(N)/N → 0 as N → ∞. However, if this rule has to be implemented in a situation
with particular data, one needs a prescription determining the choice of k. In the simulations
mentioned in the next sections there are used the constants k(N) defined as follows. Obviously,

Table 2.3.1: Values of critical constant k used in the nearest neighbors rule for 2 ≤ N ≤ 400.

N 2 ≤ N ≤ 6 7 ≤ N ≤ 11 12 ≤ N ≤ 17 18 ≤ N ≤ 31 32 ≤ N ≤ 41
k(N) 2 3 4 5 6
N 42 ≤ N ≤ 60 61 ≤ N ≤ 76 77 ≤ N ≤ 90 91 ≤ N ≤ 99 100 ≤ N ≤ 119
k(N) 7 b0.13Nc b0.12Nc 10 11
N 120 ≤ N ≤ 129 130 ≤ N ≤ 139 140 ≤ N ≤ 166 167 ≤ N ≤ 177 178 ≤ N ≤ 188
k(N) 12 13 14 15 16
N 189 ≤ N ≤ 200 201 ≤ N ≤ 300 300 < N ≤ 400
k(N) 17 d0.08 ∗Ne max(24, d0.07Ne)

the user of the procedures based on the presented ranking of the multivariate data may use
own choice of the critical constant k(N). The choice of k given in Table 2.3.1 is not claimed
to be optimal in some sense, but determining k = k(N) makes possible the practical use of
the ranking proposed in this section.

Suppose that the mapping (2.3.2) is defined by the formula u(z) = z. The ranks

R(NNt) = R(NNt)(x1, . . . ,xn) = (R
(NNt)
1 , . . . , R(NNt)

n ) (2.3.23)

computed by means of the order statics (2.3.20) by the procedure (2.1.4) are denoted with
the superscript (NNt) in order to express that they are based on the nearest neighbors
classification and on the dissimilarity measure t. In the formula (2.3.23) sometimes also the

notation R
(NNt)
j = R(NNt)(xj), j = 1, . . . , n will be used. Now let the mapping (2.3.2)

u(z) =

{ z
‖z‖ ‖z‖ > 0,

0d,1 otherwise.
(2.3.24)

The ranks
R(NNst) = R(NNst)(x1, . . . ,xn) = (R

(NNst)
1 , . . . , R(NNst)

n ) (2.3.25)

computed by means of the order statics (2.3.20) by the procedure (2.1.4) are denoted with
the superscript (NNst) in order to express that they are based on the nearest neighbors
classification, spatial signs (2.3.24) and on the dissimilarity measure t. In the formula (2.3.25)

sometimes also the notation R
(NNst)
j = R(NNst)(xj), j = 1, . . . , n will be used. We remark

that the spatial signs were used for constructing nonparametric tests e.g. by Wang, Peng,
and Li (2015), Oja and Randles (2004), Feng and Sun (2016), their use for various purposes
can be found in the monograph Oja (2010).

2.4. Multivariate dissimilarity ranks employing an ordering of the rows of
random matrix

Since the value of the dissimilarity (used in the previous construction) may depend on the
order in which the coordinates of the vector are written, we shall order them in some special
way. The resulting ordering (2.4.5) of coordinates is used in Theorem 2.4.1 for construction
of multivariate ranks.
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For x = (x1, . . . ,xn) ∈ R(d,n) let

vj = vj(x) =
1

n

n∑
i=1

(πj(xi)− πj(x)2, j = 1, . . . , d, x =
1

n

n∑
i=1

xi. (2.4.1)

and

M = M(x) = (M1, . . . ,Md)
>, Mj = median

(
πj(x1), . . . , πj(xn)

)′
(2.4.2)

denote the coordinate-wise medians. Define (cf. (2.3.10))

D(∗sp)
n = {x = (x1, . . . ,xn) ∈ D(sp)

n ; the numbers π1(M), . . . , πd(M) are mutually different}.
(2.4.3)

Obviously the relation

vj1 ≺ vj2 if vj1 < vj2 or vj1 = vj2 , πj1(M) < πj2(M) (2.4.4)

is a linear ordering of the numbers v1, . . . , vd provided that x ∈ D(∗sp)
n . Suppose that va1 ≺

va2 ≺ . . . ≺ vad denotes this ordering and

sj = median((|πj(x1 −M)|, |πj(x2 −M)|, . . . , |πj(xn −M)|)

denotes the median absolute deviation of the j-th coordinate. Put

x̆ = (x̆1, . . . , x̆n), x̆i =
(πa1(xi −M)

sa1
, . . . ,

πad(xi −M)

sad

)>
, (2.4.5)

to obtain standardized observations invariant under coordinate-wise shift and multiplication
by a positive constant.

Theorem 2.4.1. Suppose that t is a dissimilarity measure, D(∗sp)
n is the set (2.4.3) and a

sequence of d-dimensional random vectors X = (X1, . . . ,Xn) has a density with respect to the
multivariate Lebesgue measure.

(I) The equality µL(R(d,n)−D(∗sp)
n ) = 0 holds and X ∈ D(∗sp)

n with probability 1, i.e., the with
the notation (2.4.5) the transformation X̆ = (X̆1, . . . , X̆n) is well defined with probability 1,
and the vector of ranks (cf. (2.3.25), (2.3.23))

R̆(NNst) = R(NNst)(X̆1, . . . , X̆n) = (R̆
(NNst)
1 , . . . , R̆(NNst)

n ),

R̆(NNt) = R(NNt)(X̆1, . . . , X̆n) = (R̆
(NNt)
1 , . . . , R̂(NNt)

n )
(2.4.6)

are well defined with probability 1.

(II) Suppose that the sequence (Xr1 , . . . ,Xrn) has the same distribution for every permutation

(r1, . . . , rn) ∈ R(n) and the set C ⊂ D(∗sp)
n is such that P (X ∈ C) > 0. If (x1, . . . ,xn) ∈ C

implies that (xr1 , . . . ,xrn) ∈ C for each permutation (r1, . . . , rn) ∈ R(n), then for the ranks
(2.4.6) the equalities

P (R̆(NNst) = r|X ∈ C) =
1

n!
, P (R̆(NNt) = r|X ∈ C) =

1

n!
(2.4.7)

hold for each permutation r ∈ R(n).

Proof. (I) The set R(d,n) − D(sp)
n has the multivariate Lebesgue measure zero, because it is

a subset of (x1, . . . ,xn) ∈ R(d,n) such that
∑d

k=1 πk(xi1) =
∑d

k=1 πk(xi2) for some 1 ≤ i1 <

i2 ≤ n. Hence the set R(d,n) −D(∗sp)
n is a subset of the set

(R(d,n) −D(sp)
n ) ∪ {(x1, . . . ,xn) ∈ R(d,n);πj1(|x|) = πj2(|x|) for some 1 ≤ j1 < j2 ≤ d},

which has the multivariate Lebesgue measure zero. Since X has a density with respect to the
multivariate Lebesgue measure, the assertion (I) is true.
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(II) Since the set C is invariant under permutation of the columns of x, for each permutation
r ∈ R(n)

P (R̆(NNst) = r,X ∈ C) = P (R̆(NNst) = id,X ∈ C),

where id is the identical permutation of the set {1, . . . , n}. This means that the first equation
in (2.4.7) is true, the second one can be proved similarly.

2.5. Dissimilarities used in this paper

A simple dissimilarity defined on Rd used in this paper is the Euclidean norm

t1(b) =
√

b′b. (2.5.1)

In the next sections we shall consider for constructing the ranks (2.3.23) or (2.3.25) also
another version of dissimilarity. In its computation the inverse

arccotg : (−∞,+∞)→ (0, π) (2.5.2)

of the function cotg(x) is used. Suppose that b = (b1, . . . , bd)
′ ∈ Rd has all components bj

different from zero. Put b∗ = (bd, bd−1, . . . , b1)
′ and define the vectors v0 = v0(b), v∗0 =

v0(b
∗), v = v(b) from Rd−1 by formula

πi(v0) =

 arccotg
(

bd
bd−1

)
i = d− 1,

arccotg
(
cos(v0(i+ 1)) bi+1

bi

)
i = d− 2, . . . , 1,

πi(v
∗
0) =

 arccotg
(

b∗d
b∗d−1

)
i = d− 1,

arccotg
(
cos(v∗0(i+ 1))

b∗i+1

b∗i

)
i = d− 2, . . . , 1,

πi(v) = max{|πi(v0)|, |πi(v∗0)|}. (2.5.3)

Now define the dissimilarity t2 by the formula

t2 = t2(b) =
√

b′b(1 + dv′v). (2.5.4)

For zero values modify this formula as follows. Let ind denote the coordinate of non-zero
values of b and b∗ = b(ind) be the restriction of b to the index set ind (the subvector of all
non-zero components). Put

t2 = t2(b) =


t2(b

∗) #(ind) > 1,
|b| if ind consists of one element,
0 otherwise.

(2.5.5)

We remark that the user of the older version of the MATLAB has to define the function
(2.5.2) as a new MATLAB function. In the MATLAB an inverse function acot : (−∞,+∞)→
(−π/2, π/2) of the arccotg is bult-in, but acot(x) tends to −π/2 or π/2 if x tends to zero
from the left or from the right, respectively. Obviously, the function arccotg(x) = acot(x) for
x ≥ 0, and arccotg(x) = π + acot(x) otherwise, is the continuous function (2.5.2).

3. Testing the location hypothesis

It is assumed throughout this Section that Xi,1, . . . ,Xi,ni is a random sample from the dis-
tribution of the d-dimensional random vector

Xi = µi + εi, i = 1, . . . , q, (3.1)
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where the vector of constants µi denotes the location parameter, the distribution of the
column random vector εi is the same for all indexes i, possesses a density with respect to the
multivariate Lebesgue measure and the random samples are independent. The task is to test
the null hypothesis

H0 : µ1 = . . . = µq (3.2)

against the alternative that there exist indexes i1, i2 such that µi1 6= µi2 . Since the topic
of this paper is nonparametric testing with possible application to high-dimensional data, we
shall consider only nonparametric tests based on statistics defined in the setting not requiring
the assumption that the sample size is greater than dimension of the observations.

3.1. Tests in the two-sample case

In this Subsection we assume that q = 2, hence the null hypothesis

H0 : µ1 = µ2. (3.1.1)

We shall construct tests of the null hypothesis (3.1.1) by means of the Wilcoxon test statistic.
We recall that if R = (R1, . . . , Rn1 , Rn1+1, . . . , Rn1+n2) is a random vector with values in the
set of permutations R(n1+n2), then the Wilcoxon two-sample statistic Sn1,n2 =

∑n1
i=1Ri and

the critical region

Re(Sn1,n2 , w) = {reject the null hypothesis if Sn1,n2 ≤ w or Sn1,n2 ≥ n1(n1 + n2 + 1)− w},
(3.1.2)

where w = wα/2, P (
∑n1

i=1Ri ≤ wα/2) = α/2 and this probability is computed under the

assumption that the random vector R is uniformly distributed over the set R(n1+n2). As is
well-known, in the usual one-dimensional case the critical region Re(Sn1,n2 , wα/2) yields a test
of the null hypothesis at the significance level α.

To handle the multivariate case, suppose that Z = (Z1, . . . ,Zn1+n2) denotes the pooled sam-
ple, i.e.,

Z = (Z1, . . . ,Zn1+n2) = (X1,1, . . . ,X1,n1 ,X2,1, . . . ,X2,n2). (3.1.3)

Let Z̆ = (Z̆1, . . . , Z̆n1+n2) denote transformation (2.4.5) of the pooled random sample (3.1.3).
In the following Theorem we use a vector c ∈ Rd which yields large (possibly maximal) values
of the Friedman index (4.4). The computation of this vector is described in Section 4.

Theorem 3.1.1. Put n = n1 + n2. Let c = cFPP (Z̆1, . . . , Z̆n) be the Friedman projection
pursuit vector (4.8). Consider the ordering (2.2.1) of the sequence of vectors Z̆, the or-

der statistics (2.2.2) and in accordance with (2.1.4) put R
(FPP )
i = ri whenever Z̆i = Z̆(ri).

The vector of ranks R(FPP ) = (R
(FPP )
1 , . . . , R

(FPP )
n1+n2

) is uniquely defined and takes values in

R(n1+n2) with probability 1. If the null hypothesis (3.1.1) holds, then the vector R(FPP ) is
uniformly distributed over the set R(n1+n2) and the statistic

S(FPP )
n1,n2

=

n1∑
i=1

R
(FPP )
i (3.1.4)

has the same distribution as the two-sample Wilcoxon statistic Sn1,n2 based on sampling from

one-dimensional continuous distribution. Hence test with the critical region Re(S
(FPP )
n1,n2 , wα/2)

from (3.1.2) is a test of the null hypothesis at the significance level α.

Proof. As this Theorem can be easily proved by an application of Theorem 2.2.1, the proof
is omitted.

As before let Z̆ = (Z̆1, . . . , Z̆n1+n2) denote transformation (2.4.5) of (3.1.3). Then Theorem
2.4.1 implies that the ranks

R̆(NNst) = R(NNst)(Z̆1, . . . , Z̆n1+n2) = (R̆
(NNst)
1 , . . . , R̆

(NNst)
n1+n2

), (3.1.5)

R̆(NNt) = R(NNt)(Z̆1, . . . , Z̆n1+n2) = (R̆
(NNt)
1 , . . . , R̆

(NNt)
n1+n2

), (3.1.6)
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computed by means of a dissimilarity t are uniquely defined almost surely and if the null
hypothesis (3.1.1) holds, they are uniformly distributed. As their use in the Wilcoxon test
yields in some cases power which is for the ranks R̆(NNst) better than for the ranks R̆(NNt),
while in some other cases the power comparison is opposite, we propose to combine these
ranks as follows. In this combination we use also the fact that the coordinate-wise median of
the matrix Z̆ is the d-dimensional zero vector 0.

Theorem 3.1.2. Compute ( cf. (2.3.25), (2.3.23))

R
(NNst)

= R(NNst)(Z̆1, . . . , Z̆n1+n2 ,M), R
(NNt)

= R(NNt)(Z̆1, . . . , Z̆n1+n2 ,M),

where M = 0 if all vectors Z̆1, . . . , Z̆n1+n2 are different from 0, and M = 1
n1+n2

∑n1+n2
i=1 Z̆i

otherwise. Let R
(NNst)(1)

< . . . < R
(NNst)(n1+n2) denote the ordering of the first n1 +

n2 coordinates of R
(NNst)

according to their magnitude and similarly, R
(NNt)(1)

< . . . <

R
(NNt)(n1+n2) denote the ordering of the first n1 + n2 coordinates of R

(NNt)
. Use the coeffi-

cients

cNNst =

n1+n2∑
i=1

(
R

(NNst)(j) − n1 + n2 + 1

2

)(
R

(NNst)(n1+n2+1−j) − n1 + n2 + 1

2

)
, (3.1.7)

cNNt =

n1+n2∑
i=1

(
R

(NNt)(j) − n1 + n2 + 1

2

)(
R

(NNt)(n1+n2+1−j) − n1 + n2 + 1

2

)
(3.1.8)

and put (cf. (3.1.5), (3.1.6))

R̃(t) = (R̃
(t)
1 , . . . , R̃

(t)
n1+n2

) =

{
R̆(NNt) |cNNt| ≥ |cNNst|,
R̆(NNst) otherwise.

(3.1.9)

The test statistic

S̃(t)
n1,n2

=

n1∑
i=1

R̃
(t)
i (3.1.10)

is uniquely defined with probability 1. If the null hypothesis (3.1.1) holds, then the vector
of ranks (3.1.9) is uniformly distributed over the set of all permutations R(n1+n2) and the
test statistic (3.1.10) has the same distribution as the Wilcoxon statistic Sn1,n2 based on
sampling from one-dimensional continuous distribution. Hence the test with the critical region

Re(S̃
(t)
n1,n2 , wα/2) from (3.1.2) is a test of the null hypothesis at the significance level α.

Proof. The proof follows from Theorem 2.4.1. Indeed, the sets At = {|cNNt| ≥ |cNNst|},
Ast = {|cNNt| < |cNNst|} are invariant under permutation of the columns of the random
matrix Z from (3.1.3). This together with Theorem 2.4.1 means that under the validity of
the null hypothesis for each permutation r ∈ R(n)

P (R̆(NNt) = r|At) =
1

n!
, P (R̆(NNst) = r|Ast) =

1

n!
,

which together with the law of total probability means that the ranks are uniformly dis-
tributed, and the Theorem is obviously true.

The coefficient (3.1.7) can be considered as a measure of asymmetry of the vector R
(NNst)

(the same holds for (3.1.8), R
(NNt)

). Thus one may expect that the rule (3.1.9) chooses the
type of ranks for which the value of the statistic (3.1.10) is closer to the endpoints of its range,
which could under alternative favorably influence the probability of rejection.

The test of the location hypothesis based on the statistic (3.1.10) is exchangeable equivariant
and invariant under coordinate-wise shift and multiplication by a positive constant, i.e., its
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decision based on ODX1,1 +κ, . . . ,ODX1,n1 +κ,ODX2,1 +κ, . . . ,ODX2,n2 +κ is the same
for any permutation matrix O, diagonal matrix D with a positive diagonal, and any vector
κ.

In the simulation comparisons we shall use the following known tests of (3.1.1). We remark
that all these tests are spherically location equivariant, i.e., their decision based on CXi,j +κ,
i = 1, 2, j = 1, . . . , ni is the same for any orthogonal matrix C and any vector κ.

Let us define the ranking based on the first principal component. Suppose that C =
1

n1+n2

∑n1+n2
i=1 (Zi − Z)(Zi − Z)> denotes the sample covariance matrix of the pooled ran-

dom sample (3.1.3), λ1 denote its largest characteristic root and c̃ = c̃(Z) be a non-zero
characteristic vector corresponding to λ1. Let c = c(Z) be the vector (2.3.4). Compute
the scalar products c>Z1, . . . , c

>Zn1+n2 and use the ordering (2.2.1) to compute by means

of (2.1.4) the ranks R(pc) = (R
(pc)
1 , . . . , R

(pc)
n1+n2

) of the vectors Z1, . . . ,Zn1+n2 . According to
Theorem 2.2.1 the statistic

S(pc)
n1,n2

=

n1∑
i=1

R
(pc)
i (3.1.11)

is uniquely defined almost surely and under the validity of (3.1.1) it has the same distribution
as the Wilcoxon statistic Sn1,n2 based on sampling from one-dimensional continuous distribu-
tion. This statistic (3.1.11), based on ranking by means of the first principal component, has
been proposed for testing (3.1.1) by Rousson (2002). As the Referee suggested, as far as the
use of the principal component is concerned, the test procedure could be based also on more
than one component. This is a possible matter of further research, and also an implementa-
tion of the idea of invariant coordinate selection from Nordhausen, Oja, and Tyler (2006) for
constructing invariant multivariate rank tests (in high dimension).

The statistic

Tn1,n2 =
1

n1(n1 − 1)

n1∑
i 6=j

X′1,iX1,j +
1

n2(n2 − 1)

n2∑
i 6=j

X′2,iX2,j −
2

n1n2

n1∑
i=1

n2∑
j=1

X′1,iX2,j

is presented by Chen and Qin (2010). To estimate the variance of this test statistic, put

Xi(j,k) =
1

ni − 2

∑
j 6=r 6=k

Xi,r, Xi(`) =
1

ni − 1

ni∑
j 6=`

Xi,j ,

t̂r(Σ2
i ) =

1

ni(ni − 1)
tr
( ni∑
j 6=k

(Xi,j −Xi(j,k))X
′
i,j(Xi,k −Xi(j,k))X

′
i,k

)
,

̂tr(Σ1Σ2) =
1

n1n2
tr
( n1∑
`=1

n2∑
k=1

(X1,` −X1(`))X
′
1,`(X2,k −X2(k))X

′
2,k

)
,

Under the conditions postulated by Chen and Qin (2010), and under the validity of the null
hypothesis the statistic

σ̂2n1 =
2

n1(n1 − 1)
t̂r(Σ2

1) +
2

n2(n2 − 1)
t̂r(Σ2

2) +
4

n1n2
̂tr(Σ1Σ2)

is a ratio-consistent estimate of the variance of Tn1,n2 and the normalized ratio is asymptoti-
cally normal, as both n1, n2 and d tend to infinity. Therefore Chen and Qin (2010) propose

to reject the null hypothesis whenever
Tn1,n2√
σ̂2
n1

exceeds ξα, where ξα is the upper quantile of

N(0, 1). Thus the probability of rejection the null hypothesis (3.1.1) by the test of Chen and
Qin is

PCQ = P
( Tn1,n2√

σ̂2n1
> ξα

)
. (3.1.12)
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Test statistic proposed by Biswas and Ghosh (2014) is defined by means of the formulas

T ∗n1,n2
=

(n1 + n2)λ̂(1− λ̂)

2σ̂2
0

Tn1,n2
, (3.1.13)

λ̂ =
n1

n1 + n2
, σ̂2

0 =
n1S1 + n2S2

n1 + n2
, Tn1,n2 = ‖µ̂F − µ̂G‖2,

S1 =
[(n1

3

)−1 ∑
1≤i<j<k≤n1

‖X1,i −X1,j‖ ‖X1,i −X1,k‖
]
−
[(n1

2

)−1 ∑
1≤i<j≤n1

‖X1,i −X1,j‖
]2
,

S2 =
[(n2

3

)−1 ∑
1≤i<j<k≤n2

‖X2,i −X2,j‖ ‖X2,i −X2,k‖
]
−
[(n2

2

)−1 ∑
1≤i<j≤n2

‖X2,i −X2,j‖
]2
,

µ̂F =

(n1
2

)−1 n1−1∑
i=1

n1∑
j=i+1

‖X1,i −X1,j‖, (n1n2)−1
n1∑
i=1

n2∑
j=1

‖X1,i −X2,j‖

 ,
µ̂G =

(n1n2)−1
n1∑
i=1

n2∑
j=1

‖X1,i −X2,j‖,
(
n2
2

)−1 n2−1∑
i=1

n2∑
j=i+1

‖X2,i −X2,j‖

 .
The null hypothesis (3.1.1) is rejected if T ∗n1,n2

> χ2
1−α where χ2

1−α is (1 − α)th quantile of
the χ2 distribution with 1 degree of freedom, this result is derived for distributions with finite
second moments. Thus the probability of rejection the null hypothesis (3.1.1) by the test of
Biswas and Ghosh is

PBG = P (T ∗n1,n2
> χ2

1−α ). (3.1.14)

Finally, we are going to describe the test statistic proposed by Feng, Zou, and Wang (2016).
The basic tool of this statistic are a diagonal matrix Di with positive diagonal and a vector
θi ∈ Rd such that for i = 1, 2

1

ni

ni∑
j=1

U(εij) = 0,
p

ni
diag

{ ni∑
j=1

U(εij)U(εij)
>
}

= Ip, εij = D
−1/2
i (Xij − θi).

This estimates are computed by means of the following iterative procedure.

Computation of D and θ.

Step 1. Put Di = diag(vi1, . . . , vip), where vij is the sample variance of the jth coordinate of
the ith sample, and θi = 1

ni

∑ni
j=1 Xij .

Step 2. Put

εij := D
−1/2
i (Xij − θi), j = 1, . . . , ni,

θi := θi +
D

1/2
i

∑ni
j=1 U(εij)∑ni

j=1 ‖εij‖−1
,

Di := pD
1/2
i diag{ 1

ni

ni∑
j=1

U(εijU(εij)
>}D1/2

i

Let δ be a chosen inaccuracy (in the simulations mentioned in this paper δ = 0.000001). The
stopping rule is: Repeat Step 2 while

max
(
‖ 1

ni

ni∑
j=1

U(εij)− 0‖, ‖ p
ni

diag
{ ni∑
j=1

U(εij)U(εij)
>
}
− Ip‖

)
≥ δ. (3.1.15)

Since in some simulation trials this procedure seemed not to converge and typically the max-
imal number of iterations is less than 500, in the simulations mentioned in this paper and
including these statistics, the stopping rule was modified in such a way that either the number
of the iteration is 500 or the inequality (3.1.15) does not hold.
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Computation of the test statistic. Let

Rn = − 1

n1n2

n1∑
i=1

n2∑
j=1

U>
(
D̂
−1/2
1,i (X1i − θ̂2,j)

)
U
(
D̂
−1/2
2,j (X2j − θ̂1,i)

)
,

where θ̂i,j a D̂
−1/2
i,j are the location vectors and scatter matrices using leave-one-out samples

{Xik}k 6=j . Feng et al. (2016) estimate the asymptotic variance by the estimator

σ2n =
2

n1(n1 − 1)p2
t̂r(A2

1) +
2

n2(n2 − 1)p2
t̂r(A2

2) +
4

n1n2p2
̂tr(A>3 A3),

t̂r(A2
1) =

p2ĉ22ĉ
−2
1

n1(n1 − 1)

n1∑
k=1

∑
l 6=k

(
Ũ>1lD̂

−1/2
2 D̂

1/2
1 Ũ1k

)2
,

t̂r(A2
2) =

p2ĉ21ĉ
−2
2

n2(n2 − 1)

n2∑
k=1

∑
l 6=k

(
Ũ>2lD̂

−1/2
1 D̂

1/2
2 Ũ2k

)2
,

̂tr(A>3 A3) =
p2

n1n2

n1∑
l=1

n2∑
k=1

(
Ũ>1lŨ2k

)2
,

where ĉi = 1
ni

∑ni
j=1 ‖D̂

−1/2
i,j (Xi,j − θ̂i,j)‖ and Ũij = U

(
D̂
−1/2
i,j (Xij − θ̂i,j)

)
. Under the con-

ditions imposed by Feng et al. (2016) the distribution of the statistic Rn
σn

is asymptotically
normal and the probability of rejection the hypothesis (3.1.1) by the test of Feng, Zou and
Wang is

PFZW = P (
Rn
σn

> ξα). (3.1.16)

3.2. Simulation results in the two-sample case

Unless it is not said otherwise, in the simulations we shall use the matrix

Vd,m = diag(dgn) +
(
1d,d − Id

)m
d
, (3.2.1)

where dgn(j) = 1.5 + j−1
d 1.5, j = 1, . . . , d, 1d,d is the d× d matrix having on all positions the

number 1 and Id is the usual identity matrix. For large values of the dimension d we consider
in this section the location parameter and the scatter (matrix) parameter

µ = c (−1a1 ,1b1)> a1 = bd2c, b1 = d− a1, µ = c1>d , µ = c (1,01,d−1)
>

V = Id + 0.2
(
1d,d − Id

)
,

(3.2.2)

where 1a = (1, . . . , 1) denotes this a-dimensional row vector and 01,d−1 is the d−1-dimensional
vector of zeros. In some explicitly mentioned cases we shall use the location and scatter
parameters

µ̃ = (0, 3 ∗ 1d−1)
>, Ṽ = diag(100,1d−1). (3.2.3)

Let W be a symmetric positive definite d × d matrix. By the d-dimensional Cauchy dis-
tribution Cd(µ,W) we shall understand the distribution of the random vector µ + W1/2ε∗,
where the coordinates of the d-dimensional random vector ε∗ are independent and each has
the Cauchy distribution with location 0 and the scale 1. By the d-dimensional chi-square
distribution χ2

d,fre(µ,W) with fre degrees of freedom we shall understand the distribution

of the random vector µ+ W1/2ε∗, where the coordinates of the d-dimensional random vector
ε∗ are independent and each has the chi-square distribution with fre degrees of freedom. By
the d-dimensional generalized Pareto distribution Gd(µ,W, k, σ, θ), where k > 0, σ > 0, θ are
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real numbers, we shall understand the distribution of the random vector µ+ W1/2ε∗, where
the coordinates od the d-dimensional random vector ε∗ are independent and each of them has

the density f(x, k, σ, θ) = (1/σ)
(

1 + k (x−θ)
σ

)−(1+ 1
k
)

for x > θ.

The simulation estimates of probabilities of rejection at the significance level α = 0.05 are
typed with the hat symbol. In all simulation in the two sample scheme we use n1 = 10,
n2 = 15, wα/2 = 94, because for these sample sizes under the validity of the null hypothesis
P (
∑n1

j=1Rj ≤ 94) = 0.0238, P (
∑n1

j=1Rj ≤ 95) = 0.0273. Unless it is said otherwise, all the
simulations in this Section are based on N = 3500 trials.

By P̂FPP we understand the simulation estimate of the probability P (Re(S
(FPP )
n1,n2 , wα/2)) of

rejection of H0 by the statistic (3.1.4), here we use the notation (3.1.2). By P̂t we understand

the simulation estimate of probability P (Re(S̃
(t)
n1,n2 , wα/2)) of rejection H0 by the statistic

(3.1.10), here we use the dissimilarity (2.5.1) or (2.5.4). By P̂Rou we understand the simulation

estimate (cf. (3.1.11)) of P (Re(S
(pc)
n1,n2 , wα/2)), P̂CQ is the simulation estimate of (3.1.12),

P̂BG denotes the simulation estimate of (3.1.14) and P̂FZW denotes the simulation estimate
of (3.1.16).

The simulation results yielding (under the particular alternative) the largest power will be
typed in bold (two methods yielding the difference of the power not exceeding 0.06 will be
regarded as equivalent). The estimates of the probability of the first kind of error, obtained
under the validity of the null hypothesis and larger than 0.087, will be typed in bold and
the concerned method will not be included into the competition for the largest power for
the given type of the distribution. First we are dealing with the observations having the
dimension d = 10.

X1 ∼ N10(0,V10,m0), X2 ∼ N10(µ,V10,m0), m0 = 13

Table 3.2.1. µ = c(−1a1 ,1b1)>

c 0 1 1.8 4.5

P̂t2 0.046 0.348 0.856 1

P̂FPP 0.044 0.169 0.634 1

P̂CQ 0.086 0.868 1 1

P̂Rou 0.046 0.106 0.492 1

P̂BG 0.079 0.250 0.601 0.623

P̂FZW 0.064 0.918 1 1

P̂t1 0.045 0.113 0.693 1

Table 3.2.2. µ = c1>10.
c 0.8 1.1 1.6

P̂t2 0.255 0.430 0.715

P̂FPP 0.330 0.556 0.861

P̂CQ 0.477 0.709 0.937

P̂Rou 0.343 0.575 0.876

P̂BG 0.158 0.233 0.412

P̂FZW 0.381 0.602 0.882

P̂t1 0.383 0.558 0.862

Table 3.2.3. µ = c (1,01,d−1)>.
c 1 1.5

P̂t2 0.371 0.668

P̂FPP 0.483 0.819

P̂CQ 0.631 0.911

P̂Rou 0.489 0.834

P̂BG 0.202 0.375

P̂FZW 0.525 0.843

P̂t1 0.477 0.819
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X1 ∼ C10(0,V10,m0), X2 ∼ C10(µ,V10,m0), m0 = 13.

Table 3.2.4. µ = c(−1a1 ,1b1)>.
c 0 5 12 19

P̂t2 0.045 0.517 0.898 0.931

P̂FPP 0.047 0.207 0.868 0.972

P̂CQ 0.097 0.225 0.586 0.767

P̂Rou 0.047 0.073 0.233 0.460

P̂BG 0.112 0.127 0.225 0.337

P̂FZW 0.029 0.603 0.869 0.904

P̂t1 0.049 0.148 0.731 0.870

Table 3.2.5. µ = c1>10.
c 5 9 13

P̂t2 0.548 0.855 0.942

P̂FPP 0.347 0.666 0.841

P̂CQ 0.247 0.419 0.557

P̂Rou 0.344 0.665 0.843

P̂BG 0.121 0.160 0.219

P̂FZW 0.393 0.724 0.832

P̂t1 0.463 0.763 0.889

Table 3.2.6. µ = c (1,01,d−1)>.
c 5 12

P̂t2 0.548 0.929

P̂FPP 0.347 0.807

P̂CQ 0.247 0.526

P̂Rou 0.344 0.812

P̂BG 0.121 0.205

P̂FZW 0.393 0.819

P̂t1 0.463 0.869

X1 ∼ χ2
10,5(0,V10,m0

), X2 ∼ χ2
10,5(µ,V10,m0

), m0 = 13.

Table 3.2.7. µ = c(−1a1 ,1b1)>.
c 0 1.9 2.5 3.1

P̂t2 0.040 0.149 0.247 0.359

P̂FPP 0.043 0.069 0.104 0.164

P̂CQ 0.039 0.132 0.304 0.608

P̂Rou 0.043 0.056 0.075 0.103

P̂BG 0.087 0.116 0.156 0.232

P̂FZW 0.056 0.360 0.686 0.913

P̂t1 0.039 0.055 0.074 0.108

Table 3.2.8. µ = c1>10.
c 2 3 5

P̂t2 0.194 0.373 0.730

P̂FPP 0.221 0.439 0.846

P̂CQ 0.237 0.454 0.858

P̂Rou 0.231 0.454 0.856

P̂BG 0.118 0.179 0.383

P̂FZW 0.267 0.491 0.875

P̂t1 0.222 0.445 0.844

Table 3.2.9. µ = c (1,01,d−1)>.
c 3 4.5

P̂t2 0.373 0.641

P̂FPP 0.439 0.766

P̂CQ 0.454 0.781

P̂Rou 0.454 0.782

P̂BG 0.179 0.334

P̂FZW 0.491 0.807

P̂t1 0.445 0.763

X1 ∼ G10(0,V10,m0
, 1, 1, 1), X2 ∼ G10(µ,V10,m0

, 1, 1, 1), m0 = 13.

Table 3.2.10. µ = c(−1a1 ,1b1)>.
c 0 2 5 7

P̂t2 0.053 0.095 0.334 0.511

P̂FPP 0.047 0.043 0.083 0.183

P̂CQ 0.123 0.129 0.169 0.227

P̂Rou 0.049 0.047 0.057 0.072

P̂BG 0.119 0.119 0.124 0.131

P̂FZW 0.015 0.029 0.231 0.438

P̂t1 0.046 0.041 0.038 0.072

Table 3.2.11. µ = c1>10.
c 6 12 30

P̂t2 0.352 0.671 0.936

P̂FPP 0.365 0.666 0.917

P̂CQ 0.274 0.424 0.686

P̂Rou 0.362 0.673 0.932

P̂BG 0.124 0.156 0.339

P̂FZW 0.250 0.602 0.840

P̂t1 0.388 0.715 0.953
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Table 3.2.12. µ = c (1,01,d−1)>.
c 5 7

P̂t2 0.283 0.412

P̂FPP 0.298 0.427

P̂CQ 0.241 0.297

P̂Rou 0.295 0.422

P̂BG 0.124 0.128

P̂FZW 0.181 0.327

P̂t1 0.313 0.453

Table 3.2.13. Sampling with µ1 = 0 and µ2 = µ̃, Ṽ is the alternative (3.2.3), N=1000.

Xi ∼ N10(µi, Ṽ) Xi ∼ C10(µi, Ṽ) Xi ∼ χ2
10,5(µi, Ṽ) Xi ∼ G10(µi, Ṽ, 1, 1, 1)

P̂t2 1 0.637 0.908 0.455

P̂FPP 0.976 0.574 0.803 0.367

P̂CQ 0.961 0.145 0.121 0.160

P̂Rou 0.123 0.219 0.053 0.231

P̂BG 0.422 0.109 0.106 0.121

P̂FZW 1 0.437 0.999 0.178

P̂t1 1 0.854 0.931 0.441

In the following simulations the dimension of random vectors d = 1000 and the scatter
parameter is the matrix from (3.2.2). We remark that this matrix V is used in simulations
presented by Wang et al. (2015). The number of trials is in this cases N = 1000.

X1 ∼ N1000(0,V), X2 ∼ N1000(µ,V).

Table 3.2.14. µ = c(−1a1
,1b1)>, N=1000.

c 0 0.25 0.65 0.9

P̂t2 0.058 0.069 0.472 0.933

P̂FPP 0.047 0.114 0.524 0.732

P̂CQ 0.091 0.363 1 1

P̂Rou 0.056 0.079 0.363 0.865

P̂BG 0.031 0.048 0.380 0.526

P̂FZW 0.068 0.293 1 1

P̂t1 0.049 0.071 0.474 0.930

Table 3.2.15. µ = c1>1000, N=1000.
c 0.25 0.5 0.6

P̂t2 0.252 0.740 0.854

P̂FPP 0.176 0.531 0.629

P̂CQ 0.380 0.835 0.930

P̂Rou 0.255 0.726 0.865

P̂BG 0.058 0.175 0.271

P̂FZW 0.304 0.787 0.903

P̂t1 0.249 0.739 0.860

Table 3.2.16. µ = c(1,01,d−1)>, N=1000.
c 0.3 0.5

P̂t2 0.347 0.740

P̂FPP 0.221 0.517

P̂CQ 0.496 0.835

P̂Rou 0.354 0.726

P̂BG 0.077 0.175

P̂FZW 0.411 0.787

P̂t1 0.344 0.739

X1 ∼ C1000(0,V), X2 ∼ C1000(µ,V).

Table 3.2.17. µ = c(−1a1 ,1b1)>, N=1000.
c 0 10 30 100

P̂t2 0.049 0.047 0.796 0.988

P̂FPP 0.034 0.068 0.508 0.872

P̂CQ 0.085 0.104 0.372 0.851

P̂Rou 0.039 0.039 0.072 0.448

P̂BG 0.114 0.114 0.116 0.247

P̂FZW 0.019 0.077 0.772 0.928

P̂t1 0.049 0.034 0.673 0.962

Table 3.2.18. µ = c1>1000, N=1000.
c 20 40 60

P̂t2 0.713 0.970 0.990

P̂FPP 0.341 0.730 0.880

P̂CQ 0.253 0.496 0.625

P̂Rou 0.352 0.745 0.886

P̂BG 0.114 0.126 0.159

P̂FZW 0.400 0.790 0.887

P̂t1 0.669 0.939 0.973
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Table 3.2.19. µ = c(1,01,d−1)>, N=1000.
c 18 30

P̂t2 0.638 0.919

P̂FPP 0.289 0.564

P̂CQ 0.216 0.364

P̂Rou 0.299 0.573

P̂BG 0.114 0.116

P̂FZW 0.327 0.684

P̂t1 0.583 0.872

X1 ∼ χ2
1000,5(0,V), X2 ∼ χ2

1000,5(µ,V).

Table 3.2.20. µ = c(−1a1
,1b1)>, N=1000.

c 0 0.5 1.8 2.7

P̂t2 0.046 0.050 0.199 0.781

P̂FPP 0.050 0.048 0.298 0.561

P̂CQ 0.000 0.000 0.002 0.206

P̂Rou 0.045 0.058 0.241 0.772

P̂BG 0.040 0.045 0.252 0.508

P̂FZW 0.062 0.111 1 1

P̂t1 0.044 0.051 0.200 0.771

Table 3.2.21. µ = c1>1000, N=1000.
c 1 100 300

P̂t2 0.332 1 1

P̂FPP 0.245 0.999 1

P̂CQ 0.001 1 1

P̂Rou 0.338 1 1

P̂BG 0.087 0.520 0.520

P̂FZW 0.422 1 1

P̂t1 0.331 1 1

Table 3.2.22. µ = c(1,01,d−1)>, N=1000.
c 0.8 1.3

P̂t2 0.231 0.527

P̂FPP 0.189 0.433

P̂CQ 0.001 0.006

P̂Rou 0.242 0.545

P̂BG 0.067 0.127

P̂FZW 0.291 0.625

P̂t1 0.232 0.533

X1 ∼ G1000(0,V, 1, 1, 1), X2 ∼ G1000(µ,V, 1, 1, 1).

Table 3.2.23. µ = c(−1a1
,1b1)>, N=1000.

c 0 25 50 60

P̂t2 0.048 0.032 0.403 0.629

P̂FPP 0.037 0.130 0.443 0.589

P̂CQ 0.101 0.158 0.411 0.510

P̂Rou 0.045 0.053 0.082 0.098

P̂BG 0.112 0.112 0.124 0.131

P̂FZW 0.040 0.156 0.629 0.750

P̂t1 0.048 0.027 0.303 0.543

Table 3.2.24. µ = c1>d , N=1000.
c 20 35 40

P̂t2 0.203 0.454 0.543

P̂FPP 0.186 0.417 0.493

P̂CQ 0.193 0.315 0.360

P̂Rou 0.205 0.454 0.530

P̂BG 0.112 0.113 0.115

P̂FZW 0.119 0.311 0.391

P̂t1 0.229 0.492 0.575

Table 3.2.25. µ = c(1,01,d−1)>, N=1000.
c 30 45

P̂t2 0.372 0.619

P̂FPP 0.328 0.559

P̂CQ 0.279 0.394

P̂Rou 0.378 0.587

P̂BG 0.113 0.118

P̂FZW 0.237 0.458

P̂t1 0.406 0.653
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Table 3.2.26. Sampling with µ1 = 0 and µ2 = µ̃, Ṽ is the alternative (3.2.3). N=1000.

Xi ∼ N1000(µi, Ṽ) Xi ∼ C1000(µi, Ṽ) Xi ∼ χ2
1000,5µi, Ṽ) Xi ∼ G1000(µi, Ṽ, 1, 1, 1)

P̂t2 1 0.149 1 0.040

P̂FPP 1 0.550 0.953 0.485

P̂CQ 1 0.204 1 0.202

P̂Rou 1 0.227 1 0.154

P̂BG 0.519 0.119 0.499 0.108

P̂FZW 1 0 1 0

P̂t1 1 0.434 1 0.054

Before summarizing these simulation results, we remark that the test of Biswas and Ghosh, the
test of Chen and Qin, and the test of Feng, Zou and Wang, use rejection regions based on the
asymptotic distribution of the underlying statistic and do not possess null distribution under
the validity of the null hypothesis, they attain the chosen significance level only asymptotically
(as the sample sizes tend to infinity). In contradistinction to this, the test of Rousson, the test
based on the Wilcoxon statistic and a chosen dissimilarity, and the test based on the Wilcoxon
statistic and the sample Friedman projection pursuit vector, possess null distribution under
the validity of the null hypothesis, and by a suitable choice of the rejection constant one can
achieve a wished finite sample significance level. This does not contradict with the fact that
under validity of H0 the simulation estimates of P̂t2 vary a little with the type of the sampled
continuous distributions, which is caused by the fact that simulations are not absolutely
prefect (the same holds for P̂FPP , P̂Rou and P̂t1).

First pay attention to the previously published tests. It can be seen from the tables that
the test of Biswas and Ghosh does not yield for the considered sample sizes and types of
distribution the power belonging to the strongest category.

Even though for the dimension of the data d = 10 the test of Chen and Qin yields often the
power belonging to the strongest category (in Tables 3.2.1, 3.2.2, 3.2.3, 3.2.8, 3.2.9 and 3.2.13),
for Cauchy distribution its size (i.e., the probability of the first kind error) equals 0.097 and
for the generalized Pareto 0.123 (Tables 3.2.4 and 3.2.10), which considerably exceeds the
nominal level 0.05. For d = 1000 the test of Chen and Qin has for normal distribution size
0.091, for generalized Pareto distribution 0.101 (Tables 3.2.14 and 3.2.23), and on the other
hand, in Table 3.2.22 its power is less than 0.01 (considerably less than for the other mentioned
tests). Hence the test of Chen and Qin, whose rejection region is based on the asymptotic
distribution, requires larger sizes than those considered in the presented simulations.

The test of Feng, Zou and Wang uses estimates based on an iterative procedure. As remarked
by Feng and Sun (2016) on p. 2422, even though there is no proof for the existence of
these estimates, they seem to work in practice. In the simulations presented in this paper
in some rare cases the procedure seemed not to converge in a reasonable time. Therefore
the simulation estimates were computed with the inaccuracy δ = 0.000001 in (3.1.15) and
the algorithm was instructed to stop either when (3.1.15) does not hold or when the number
of iterations reaches 500. This large number of iterations occurred in sampling from 1000
dimensional Cauchy C1000(µ,V) distribution or from generalized Pareto G1000(µ,V, 1, 1, 1)
distribution, where the relative frequency of these samples was 150/1000 = 0.15. The test
of Feng, Zou and Wang, although based on the asymptotic distribution, for the considered
distributions and sample sizes yields the largest size 0.068 (Table 3.2.14), which may be
regarded as an acceptable value.

The power of the tests can be judged from the point of view of the strongest category recorded
in the previous simulations.
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Table 3.2.27. The number of cases with power of the first category.

dimension d=10 dimension d=1000

P̂t2 18 22

P̂FPP 15 9

P̂Rou 12 13

P̂FZW 16 24

P̂t1 17 21

First consider the case when the dimension of observations is not too large and close to sample
sizes (here d=10, n1 = 10, n2 = 15). The simulations suggest that the performance of the
test based on the Wilcoxon statistic (and the dissimilarity t1 or the dissimilarity t2) and the
performance of the test of Feng, Zou and Wang, appear to be equivalent, because the numbers
of the recorded first category power 18–16 do not differ strikingly. When the numerical size
of the recorded power is taken as the sole criterion and two methods yielding the difference
of the power not exceeding 0.06 are regarded as equivalent, one obtains a similar result. The
i-th row of the following table corresponding to the probability P̂i shows how many times P̂i
is better than the probability in the jth column (e.g, P̂t2 is better than P̂FZW in 15 cases and
P̂FZW is better than P̂t2 in 17 cases).

P̂t2 P̂FPP P̂FZW P̂t1
P̂t2 0 16 15 13

P̂FPP 9 0 7 3

P̂FZW 17 9 0 10

P̂t1 10 7 9 0

Hence from this point of view P̂FZW appears to have the best ranking. From the point of
view of the sampled distribution, the best results for sampling from the normal or from the
chi-square distribution yields the test Feng, Zou and Wang, for sampling from the Cauchy
distribution or from the generalized Pareto distribution yields the test based on t2.

For the dimension of observations considerably greater than the sample sizes (here d=1000,
n1 = 10, n2 = 15), two competitors appear as the most successful, because the performance
of the test based on the Wilcoxon statistic and the dissimilarity t2 (22 first category cases),
and the performance of the test of Feng, Zou and Wang (24 first category cases), appear to be
equivalent. When the numerical size of the recorded power is taken as the sole criterion and
two methods yielding the difference of the power not exceeding 0.06 are regarded as equivalent,
then ranking of these two methods yields similar results (t2 is better than the test of Feng,
Zou and Wang in 12 cases, and FZW is better than t2 in 12 cases), but the results when FZW
test is better than t2 test are sometimes more striking than in the opposite case (Tables 3.2.14
and 3.2.20). Also in this case when the dimension of observations d = 1000, the test based
on t2 is better for sampling from the Cauchy distribution and from the generalized Pareto
distribution, the test Feng, Zou and Wang is better for sampling from the normal distribution
and from the chi-square distribution. However, when one wants to have a safeguard against
the case when the scale parameter of some coordinate of observations strikingly exceeds the
scale parameters of the other coordinates (like in (3.2.3)), then the results from Table 3.2.26
suggest that for high dimensions (like d=1000) the use of the test based on the Friedman
projection pursuit vector is recommendable.

3.3. Tests of the location hypothesis in the multisample case

Now we are going to deal with testing of the hypothesis (3.2) when in (3.1) the number of the
samples q > 2. In this Subsection n = n1 + n2 + . . .+ nq denotes the total sample size and

Z = (Z1, . . . ,Zn) = (X1,1, . . . ,X1,n1 ,X2,1, . . . ,X2,n2 , . . . ,Xq,1, . . . ,Xq,nq) (3.3.1)
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the pooled random sample. Suppose that

R = (R1,1, . . . , R1,n1 , R2,1, . . . , R2,n2 , . . . , Rq,1, . . . , Rq,nq) (3.3.2)

is a random vector with values in the set R(n) of all permutations of {1, . . . , n}. Let us recall
that in accordance with Theorem 1, p. 205 of Hájek et al. (1999), and the results of Kruskal
and Wallis (1952), the Kruskal-Wallis test statistic and its rejection region are

Qn1,...,nq(R) =
12

n(n+ 1)

q∑
i=1

ni

(S[i](R)

ni
− n+ 1

2

)2
, S[i](R) =

ni∑
j=1

Ri,j , i = 1, . . . , q, (3.3.3)

Re(Qn1,...,nq(R)) = {reject the null hypothesis if Qn1,...,nq(R) > χ2
q−1(1− α)},(3.3.4)

where χ2
q−1(1− α) is (1− α)th quantile of the χ2 distribution with q − 1 degrees of freedom.

Let
P
[

max
i,j
|yi − yj | < c(q, 1− α)

∣∣∣y ∼ Nq(0, Iq)
]

= 1− α, (3.3.5)

this constant c(q, 1 − α) can be found in the Tables of the monograph Hollander and Wolfe
(1999) or of Harter (1960). If

min{n1, . . . , nq} → ∞,
ni
n
→ pi > 0, i = 1, . . . , q, (3.3.6)

∆(R,n1, . . . , nq) = max
i,j

∣∣∣S[i](R)

ni
− S[j](R)

nj

∣∣∣√
1
ni

+ 1
nj

√
24

n(n+ 1)
(3.3.7)

and the random vector (3.3.2) is uniformly distributed, then the convergence

P
(

∆(R,n1, . . . , nq) > c(q, 1− α)
)
→ γ ≤ α (3.3.8)

holds. Here γ depends on the limiting values p1, . . . , pq only and the inequality in (3.3.8)
holds with the equality sign if p1 = . . . = pq = 1

q . This can be proved by means of the results
of Critchlow and Fligner (1991), pp. 130–131, the proof can be found on pp. 731 – 732 of
Rubĺık (2005).

Theorem 3.3.1. Suppose that Z̆ denotes transform of Z computed by means of (2.4.5). By
means of the dissimilarity t compute (cf. (2.3.25)), (2.3.23))

R
(NNst)

= R(NNst)(Z̆1, . . . , Z̆n,M), R
(NNt)

= R(NNt)(Z̆1, . . . , Z̆n,M),

where M = 0 if all vectors Z̆1, . . . , Z̆n are different from 0, and M = 1
n

∑n
i=1 Z̆i otherwise.

Let R
(NNst)(1)

< . . . < R
(NNst)(n)

denote the ordering of the first n coordinates of R
(NNst)

according to their magnitude and similarly, R
(NNt)(1)

< . . . < R
(NNt)(n)

denote the ordering

of the first n coordinates of R
(NNt)

. Further, let

cNNst =
n∑
j=1

(
R

(NNst)(j) − n+ 1

2

)(
R

(NNst)(n+1−j) − n+ 1

2

)
, (3.3.9)

cNNt =

n∑
j=1

(
R

(NNt)(j) − n+ 1

2

)(
R

(NNt)(n+1−j) − n+ 1

2

)
, (3.3.10)

R̃(t) = (R̃
(t)
1 , . . . , R̃(t)

n ) =

{
R̆(NNt) |cNNt| ≥ |cNNst|,
R̆(NNst) otherwise,

(3.3.11)

where R̆(NNt) = R(NNt)(Z̆1, . . . , Z̆n), R(NNst) = R(NNst)(Z̆1, . . . , Z̆n) are the ranks computed
as in (2.3.23) and (2.3.25).
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(I) Use the notation (3.3.2), (3.3.3) and put

Q̃n1,...,nq ,t = Qn1,...,nq(R̃(t)). (3.3.12)

Since the assumptions imposed at the beginning of Section 3 hold, this quadratic test statistic
of the Kruskal-Wallis type is uniquely defined with probability 1.

(II) Let the hypothesis (3.2) hold. Then the vector of ranks (3.3.11) is uniformly distributed
over the set of all permutations R(n) and the test statistic (3.3.12) is as distributed as the
Kruskal-Wallis q-sample rank test statistic in the case of the validity of the null hypothesis
and sampling from one-dimensional continuous distribution. Hence if (3.3.6) is fulfilled then
Q̃n1,...,nq ,t converges in distribution to the chi-square distribution with q−1 degrees of freedom

and the convergence (3.3.8) holds with ∆(R̃(t), n1, . . . , nq).

Proof. The existence of the statistic (3.3.12) follows from Theorem 2.4.1(I). Similarly as in
the proof of Theorem 3.1.2, the validity of Theorem 2.4.1 implies that the vector of ranks
(3.3.11) is uniformly distributed over the set of permutations R(n), and the rest of the proof
follows from the previously mentioned results.

In accordance with the previous Theorem the hypothesis (3.2) can be tested by means of the
rejection region Re(Qn1,...,nq(R̃(t))) from (3.3.4), the simulation estimates of the probability

of this region will be denoted by P̂Q̃t
. After the rejection of this null hypothesis the means

µi, µj are declared to be different if for (3.3.7) the inequality ∆(R̃(t), n1, . . . , nq) > c(q, 1−α)
holds. Let gd denote the good decision that by this rule at least one pair of different
location parameters was detected as different, and wd the wrong decision that at least
one pair of identical location parameters was wrongly declared as different. The quality
of this multiple comparisons rule can be described by the probabilities P (gd|rej(Q̃t)) and
P (wd|rej(Q̃t)), rej(Q̃t) = Re(Qn1,...,nq(R̃(t))), their simulation estimates are denoted by

P̂Q̃t
(gd) and P̂Q̃t

(wd), respectively.

In the same way as in the previous Sections, the ranking of the observations can be carried
out also means of the ordering based on the multiplication with a random vector. As details
are obvious, we include only a brief description. Let Z̆ denote the transformation (2.4.5) of
the pooled random sample Z. Similarly as in Theorem 3.1.1 let c = cFPP (Z̆1, . . . , Z̆n) be the

projection pursuit vector (4.8) and R(FPP ) = (R
(FPP )
1 , . . . , R

(FPP )
n ) denote the ranks of the

numbers c>Z̆1, . . . , c
>Z̆n computed by means of the ordering (2.2.1). Then P̂QFPP

will denote
the simulation estimate of P [Re(Qn1,...,nq(R(FPP )))] of the rejection the null hypothesis (3.2)

by means of the statistic Qn1,...,nq(R(FPP ))), the quality of multiple comparisons rule based on

the ranks R(FPP ) will be described by the simulation estimates P̂Q̃FPP
(gd) and P̂Q̃FPP

(wd).

Finally, let c̃ = c̃(Z) be a non-zero characteristic vector corresponding to the largest charac-
teristic root of the sample covariance matrix 1

n

∑n
i=1(Zi−Z)(Zi−Z)> of the pooled random

sample (3.3.1), and c be the vector (2.3.4). Compute the scalar products c>Z1, . . . , c
>Zn

and use the ordering (2.2.1) to compute the ranks R(pc) = (R
(pc)
1 , . . . , R

(pc)
n ) of the pooled

random sample Z. Then P̂Q(pc) denotes the simulation estimate of the probability of re-

jection P [Re(Qn1,...,nq(R(pc)))] and P̂Q(pc)(gd), P̂Q(pc)(wd) denote simulation estimates of the
probability of good decision and wrong decision, respectively.

In the following simulations the sample sizes n1 = 10, n2 = 10, n3 = 15. Similarly as in the
previous Section, the simulation results yielding (under the particular alternative) the largest
power will be typed in bold, methods yielding the difference of the power not exceeding 0.06
will be regarded as equivalent.
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Table 3.3.1. Sampling from N1000(µi,V) distribution, i=1,2,3, N=1000 trials.

µi = 0d×1, i = 1, 2, 3
µi = ci 1′1000, i = 1, 2, 3,

c1 = −0.23, c2 = 0, c3 = 0.23
µi = 0d×1, i = 1, 2,
µ3 = 0.5 1′1000

P̂Q̃t2
0.048 0.531 0.789

P̂Q̃t2
(gd) 0 0.951 0.949

P̂Q̃t2
(wd) 0.102 0 0

P̂QFPP
0.039 0.414 0.634

P̂Q̃FPP
(gd) 0 0.937 0.953

P̂Q̃FPP
(wd) 0.128 0 0

P̂Q(pc) 0.047 0.537 0.794

P̂Q(pc)(gd) 0 0.957 0.945

P̂Q(pc)(wd) 0.106 0 0

P̂Q̃t1
0.049 0.529 0.789

P̂Q̃t1
(gd) 0 0.958 0.951

P̂Q̃t1
(wd) 0.102 0 0

Table 3.3.2. Sampling from Cauchy C1000(µi,V) distribution, i=1,2,3, N=1000 trials.

µi = 0d×1, i = 1, 2, 3
µi = ci 1′1000, i = 1, 2, 3,
c1 = −16, c2 = 0, c3 = 16

µi = 0d×1, i = 1, 2,
µ3 = 23 1′1000

P̂Q̃t2
0.042 0.949 0.895

P̂Q̃t2
(gd) 0 0.992 0.972

P̂Q̃t2
(wd) 0.095 0 0

P̂QFPP
0.034 0.593 0.483

P̂Q̃FPP
(gd) 0 0.948 0.917

P̂Q̃FPP
(wd) 0.177 0 0

P̂Q(pc) 0.041 0.595 0.492

P̂Q(pc)(gd) 0 0.950 0.902

P̂Q(pc)(wd) 0.073 0 0

P̂Q̃t1
0.048 0.926 0.872

P̂Q̃t1
(gd) 0 0.990 0.966

P̂Q̃t1
(wd) 0.042 0 0

Table 3.3.3. Sampling from chi-square χ2
1000,5(µi,V) distribution, i=1,2,3, N=1000 trials.

µi = 0d×1, i = 1, 2, 3
µi = ci 1′1000, i = 1, 2, 3,
c1 = −0.9, c2 = 0, c3 = 0.9

µi = 0d×1, i = 1, 2,
µ3 = 1.5 1′1000

P̂Q̃t2
0.051 0.726 0.700

P̂Q̃t2
(gd) 0 0.961 0.936

P̂Q̃t2
(wd) 0.059 0 0

P̂QFPP
0.047 0.651 0.630

P̂Q̃FPP
(gd) 0 0.951 0.932

P̂Q̃FPP
(wd) 0.128 0 0

P̂Q(pc) 0.050 0.728 0.712

P̂Q(pc)(gd) 0 0.975 0.938

P̂Q(pc)(wd) 0.120 0 0

P̂Q̃t1
0.052 0.721 0.699

P̂Q̃t1
(gd) 0 0.968 0.936

P̂Q̃t1
(wd) 0.039 0 0
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Table 3.3.4. Sampling from the generalized Pareto G1000(µi,V, 1, 1, 1) distribution,
i = 1, 2, 3,N=1000 trials.

µi = 0d×1, i = 1, 2, 3
µi = ci 1′1000, i = 1, 2, 3,
c1 = −23, c2 = 0, c3 = 23

µi = 0d×1, i = 1, 2,
µ3 = 40 1′1000

P̂Q̃t2
0.047 0.608 0.693

P̂Q̃t2
(gd) 0 0.961 0.951

P̂Q̃t2
(wd) 0.064 0 0

P̂QFPP
0.038 0.530 0.555

P̂Q̃FPP
(gd) 0 0.957 0.941

P̂Q̃FPP
(wd) 0.184 0 0.002

P̂Q(pc) 0.038 0.557 0.581

P̂Q(pc)(gd) 0 0.959 0.945

P̂Q(pc)(wd) 0.184 0 0

P̂Q̃t1
0.047 0.640 0.717

P̂Q̃t1
(gd) 0 0.956 0.957

P̂Q̃t1
(wd) 0.064 0 0.000

These simulation results suggest that for the considered distributions, dimension of observa-
tions and sample sizes, the performance of the statistics Qn1,...,nq ,t2 , Qn1,...,nq ,t1 is equivalent.
An equivalent power for sampling from the normal or chi-square distribution is achieved
also by the statistic Qn1,...,nq(R(pc)) based on the ranks of the first principal component, but
for sampling from Cauchy distribution or from generalized Pareto distribution the statistic
Qn1,...,nq(R(pc)) is outperformed both by Qn1,...,nq ,t2 and Qn1,...,nq ,t1 .

Obviously, the description of performance of tests in this multisample problem will require
further extensive simulations.

4. Conclusion

As the multisample case was in the previous Subsection handled only tentatively for several
alternatives, we pay attention to the two-sample testing of the location hypothesis. As is
explained at the end of Subsection 3.2, two amongst the considered tests appear to yield
for the considered moderate sample sizes the best results: the test of Feng, Zou and Wang
(briefly FZW ), and also the test based on the Wilcoxon test statistic, the ranks (3.1.9) and
the dissimilarity t2 from (2.5.4).

When comparing the power of these tests in the framework of the completely unknown con-
tinuous distribution, the performance of the FZW test and the test based on the dissimilarity
t2 is approximately the same. As to the case of the special type of distributions, as an ad-
vantage of the FZW test one may regard the fact that it yields better results when sampling
is drawn from Gaussian distributions. As can be seen from the simulation results presented
in Subsection 3.2, the test based on t2 is better for sampling from the Cauchy distribution
and from the generalized Pareto distribution, the FZW test is better for sampling from the
normal distribution and from the chi-square distribution.

A slight disadvantage of FZW test is that it uses an iterative computational procedure for
which the exact proof of convergence is unknown, but this may be handled in the way explained
in the description of the simulations of its power (cf. the text following the Table 3.2.26). An
important feature of the t2 based test is that it is based on the precise null distribution and
yields precise chosen significance level.

As is explained at the end of Subsection 3.2, when one wants to have a safeguard against the
case when the scale parameter of some coordinate of observations strikingly exceeds the scale
parameters of the other coordinates, then for high dimensions (like d=1000) the use of the
test based on the Friedman projection pursuit vector is recommendable.
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As far as some extensions of the results of the paper are concerned, one could use the fact
that similarly as in the construction of the sample principal components, the construction of
the extreme values of the dissimilarity based ranks proposed in this paper begins with the use
of the first characteristic vector of the sample covariance matrix. As has already been in the
paper said, it is not clear whether the first principal component should separate the groups
best and one could also consider a use of more than one component for the construction of
the multivariate ranks, which is a possible matter of further research.

Appendix: Computation of the projection pursuit vector

For the sake of completeness, we include the description of the algorithm for computation of
the Friedman projection pursuit vector, used in the simulations mentioned in the previous
text. It is based on the formulas of Friedman (1987). Even though this description uses
Matlab commands, it is not an algorithm ready for use, and for the space reasons it provides
an outline of computation procedure only. The computation similarly as the approach of
Friedman and Tukey (1974 ser. C) uses a transformation of the unit sphere to an Euclidean
space, which enables to proceed without constraints.

The computation is carried out in three parts. In Part 1 the procedure (33) of Friedman
(1987) is used to obtain a preliminary initial value a of the projection pursuit vector. In Part
2 the initial value ϕ(0) of the spherical coordinates, used in the next iterations, is computed
(i.e, if all coordinates of a are different from zero, then ϕ(0) are its spherical coordinates,
otherwise ϕ(0) are spherical coordinates of a suitable approximation of a). In Part 3 an
iterative computation based on the ϕ(0) is carried out and the resulting value is by means of
(4.8) transformed back into the unit sphere.

As the procedure is based on the use of the gradient method and employs the multivariate
spherical coordinates, let us recall their definition. Let Td = Td(ϕ) : Rd−1 → Rd be the

mapping with the coordinates cos(ϕ1), sin(ϕ1)cos(ϕ2), . . . ,
(∏d−2

j=1 sin(ϕj)
)
cos(ϕd−1) and

the last coordinate is
(
sin(ϕ1)sin(ϕ2) . . . sin(ϕd−2)sin(ϕd−1)

)
. Then ‖Td(ϕ‖ = 1 and for

every vector x = (x1, . . . , xd)
> ∈ Rd with ‖x‖ = 1 and

∏d
i=1 xi 6= 0 there exists a unique

vector ϕ ∈ (0, 2π)× (0, π)d−2 such that x = Td(ϕ). This vector is described by the formulas

ϕd−1 = arccotg
(xd−1
xd

), ϕj = arccotg
( xj
xj+1

cos(ϕj+1)
)
, j = d− 2, . . . , 2 (4.1)

x1 > 0, x2 > 0, cos(ϕ2) > 0
x1 > 0, x2 < 0, cos(ϕ2) < 0
x1 < 0, x2 > 0, cos(ϕ2) > 0
x1 < 0, x2 < 0, cos(ϕ2) < 0

 ϕ1 = arccotg
(x1
x2
cos(ϕ2)

)
, (4.2)

x1 > 0, x2 > 0, cos(ϕ2) < 0
x1 > 0, x2 < 0, cos(ϕ2) > 0
x1 < 0, x2 < 0, cos(ϕ2) > 0
x1 < 0, x2 > 0, cos(ϕ2) < 0

 ϕ1 = arccotg
(x1
x2
cos(ϕ2)

)
+ π. (4.3)

where arccotg : (−∞,+∞) → (0, π). For this vector ϕ we shall use in the next text the
notation ϕ = sph(x).

Let z1, . . . , zn, a be vectors from Rd and ‖a‖ = 1. In accordance with the formula (10) and
p. 258 of Friedman (1987) let

Î(a) =
1

2

6∑
j=1

(2j + 1)

[
1

n

n∑
i=1

Pj(2Φ(a>zi)− 1)

]2
(4.4)
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denote the projection index of order 6, where P1(x) = x, P2(x) = 1
2(3x2 − 1),. . . ,P6(x) =

1
16(231x6− 315x4 + 105x2− 5) are the first 6 Legendre polynomials and Φ denotes the distri-

bution function of the N(0, 1) distribution. The aim is to maximize Î(a).

Part 1. In this part the projection index is preliminarily maximized by means of the coordi-
nate axes. As before, let ei ∈ Rd denote the vector whose j-th coordinate is 1 if j = i and 0
otherwise. In accordance with (33) of Friedman (1987) let

j∗ = min
{
j; Î(ej) = max

1≤`≤d
Î(e`)

}
, Î0 = Î(ej∗), a∗ = ej∗ .

f(j∗) = Î(ej∗), s(j∗) = 0, k = 1, A(:, k) = a∗.

For i = 1, . . . , q, i 6= j∗ let

f+ = I
(
a∗+ei√

2

)
, f− = I

(
a∗−ei√

2

)
,

if f+ > f− then f(i) = f+, s(i) = 1, else f(i) = f−, s(i) = −1,
fm = max` f(`).

Choose the inaccuracy ε > 0 (in the simulations of the paper ε = 0.01) and put

Df = χ〈ε,+∞)
(fm − Î0), difference(1) = 1.

where χ〈ε,+∞)
(y) equals 1 if y ≥ ε, and 0 otherwise. The next procedure is constructed in

such a way that its length does not exceed d.

while Df > 0

f0 = Î(a∗), fmold = fm,
for i = 1 . . . q

f+ = Î
( a∗ + ei
‖a∗ + ei‖

)
, f− = Î

( a∗ − ei
‖a∗ − ei‖

)
,

if f+ > f− then f(i) = f+, s(i) = 1 else f(i) = f−, s(i) = −1
end;

fm = max
`
f(`), i1 = min{i; f(i) = fm},

k := k + 1, a∗ =
a∗ + s(i1)ei1
‖a∗ + s(i1)ei1‖

, A(:, k) = a∗, difference(k) = sign(fm − fmold)

Df = χ〈ε,+∞)
(fm − fmold)χ(−∞,d〉(k)

end

where χ
(−∞,d〉(k) equals 1 if k ≤ d and 0 otherwise. Taking into account the possibility of

the decrease in the last iteration we put a = A(:, k − 1) if difference(k) = −1, otherwise
a = A(:, k).

Part 2. In Part 3 we shall use the gradient method implemented by means of the spherical
coordinates. As they are uniquely defined only for vectors with nonzero coordinates, in this
Part we shall find spherical coordinates ϕ(0) which create a vector whose projection index
equals (up to a chosen inaccuracy) the number Î(a), where a is the vector obtained in the
Part 1 of this procedure.

If
∏q
i=1 a(i) 6= 0, put

ϕ(0) = sph(a).

Let a(i) = 0 for some i (i.e., the spherical coordinates are not defined). We are going to find
non-zero angles ϕ(0) such that Î(Td(ϕ

(0))) ≥ Î(a)− 0.01. Put

k = 10, t =
(
δ(a(1), 0), . . . , δ(a(q), 0)

)>
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where δ(α, β) = 1 if α = β and δ(α, β) = 0 otherwise, denotes the Kronecker delta. We use
the algorithm

a∗ =
(

1− 1
4k

)
a + 1

4k
t, ã = a∗

‖a∗‖ ,

while Î(a∗) <
(
Î(a)− 0.01

)
&(k < 25)

k = k + 1, a∗ =
(

1− 1
4k

)
a + 1

4k
t, ã = a∗

‖a∗‖ ,

end

i.e., the search for ã will stop not later than after 25 steps, which will be sufficient in the
majority of cases. By means of this vector compute

ϕ(0) = sph(ã).

Part 3. We shall use in this Part the notation

Îs(ϕ) = Î
(
Td(ϕ)

)
, ∇Îs(ϕ) =


∂Îs(ϕ)
∂ϕ1

...
∂Îs(ϕ)
∂ϕd−1

 .

Compute M = max{
∣∣∣∂Îs(ϕ)

∂ϕi

∣∣∣
ϕ=ϕ(0)

; i = 1, . . . , d − 1}. If M = 0 then ϕ(0) is a stationary

point of Î. Therefore in this case put

ϕ̂ = ϕ(0), (4.5)

and stop the iteration procedure.

Let M > 0. Define the column vector by the formula

t =
(
sign

(∂Îs(ϕ)

ϕi
|ϕ=ϕ(0)

)
; i = 1, . . . , d− 1

)
.

It is known that for all α > 0 sufficiently small and ϕ̃ = ϕ(0)+αt the inequality Îs(ϕ̃) > Îs(ϕ
0)

holds. We shall find such a majorizing point by means of the following iteration computation.

k = 2; firstAngles = ϕ(0) + 1
10k

t; Ik = Îs(firstAngles);

while Ik < (Îs(ϕ
0)− 0.001)&(k < 17);

k := k + 1; firstAnglesk = ϕ(0) + 1
10k

t; Ik = Îs(firstAnglesk);

end

if k == 2

ϕ(1) = firstAngles

else

ϕ(1) = firstAnglesk;

end

i.e., the search for the angles ϕ(1) = ϕ̃ will be stopped not later than after 17 steps, which
will be sufficient in the majority of cases.

Suppose that k ≥ 1 and vector ϕ(k) is already defined. Then

if ∇Îs(ϕ(k−1)) = ∇Îs(ϕ(k)) put ϕ̂ = ϕ(k) and stop the computation. (4.6)
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If ∇Îs(ϕ(k−1)) 6= ∇Îs(ϕ(k)), then define

γk =
(ϕ(k) −ϕ(k−1))>

‖∇Îs(ϕ(k−1))−∇Îs(ϕ(k))‖2
[
∇Îs(ϕ(k))−∇Îs(ϕ(k−1))

]
,

ϕ(k+1) = ϕ(k) + γk∇Îs(ϕ(k)) if Îs

(
ϕ(k) + γk∇Îs(ϕ(k))

)
> Îs(ϕ

(k)),

otherwise ϕ(k+1) = ϕ(k) − γk∇Îs(ϕ(k)).

Employ these formulas and use the stopping rule

if ‖∇Îs(ϕ(k))‖ ≤ 0.01 or k ≥ 37 put ϕ̂ = ϕ(k) and stop the computation. (4.7)

Finally, making use of (4.5)–(4.7) compute the Friedman project pursuit vector

cFPP (z1, . . . , zn) = Td(ϕ̂), (4.8)

where the mapping Td is defined at the beginning of this Section.

It is obvious that in the stopping rules mentioned in this Section the inaccuracies and the
number of iterations may be chosen according to one’s personal preferences. Although the
convergence of this procedure is not guaranteed, this construction of computation yields the
chosen upper bound for the number of iterations (in the present text, the bound is 37).
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Hájek J, Šidák Z, Sen PK (1999). Theory of Rank Tests. Academic Press, New York. ISBN
0-12-642350-4.

DOI: 10.1214/16-EJS1176
DOI: 10.1080/01621459.2015.1035380
DOI 10.1007/s00180-017-0732-4


42 Nonparametric Tests

Harter HL (1960). “Tables of Range and Studentized Range.” The Annals of Mathematical
Statistics, 31(4), 1122 – 1147.

Hollander M, Wolfe DA (1999). Nonparametric Statistical Methods. Wiley, New York. ISBN
0-471-19045-4.

Kruskal WH, Wallis WA (1952). “Use of Ranks in One-Criterion Variance Analysis.” Journal
of the American Statistical Association, 47(260), 583–621.

Nordhausen K, Oja H, Tyler DE (2006). “On the Efficiency of Invariant Multivariate Sign
and Rank Tests.” Festschrift for Tarmo Pukkila on his 60th birthday, p. 217.

Oja H (2010). Multivariate Nonparametric Methods with R. Springer, New York. DOI
10.1007/978-1-4419-0468-3.

Oja H, Randles RH (2004). “Multivariate Nonparametric Tests.” Statistical Science, 19(4),
598–605. URL DOI10.1214/088342304000000558.

Rousson V (2002). “On Distribution-Free Tests for the Multivariate Two-Sample Location-
Scale Model.” Journal of Multivariate Analysis, 80, 43–57. URL doi:10.1006/jmva.2000.

1981.
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