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ASYMPTOTIC DISTRIBUTION OF
THE LIKELIHOOD RATIO TEST STATISTIC

IN THE MULTISAMPLE CASE

Frantǐsek Rubĺık

ABSTRACT. Classical results on asymptotic distribution of the likeli-
hood ratio test statistic are extended to multipopulation setting. The as-
sertions include a statement on asymptotic distribution in the case of linear
hypotheses and a statement on asymptotic distribution for the hypothe-
ses approximable by cones. The later framework includes usual smooth
hypotheses and is dealt with under validity of local alternatives.

1. Introduction and the main results.

Suppose that probabilities {P γ; γ ∈ Ξ } are defined by means of densities
{ f(x, γ); γ ∈ Ξ } with respect to a measure ν on (X,S). Let

L(x1, . . . , xn,Ω) = sup {
n∏

i=1

f(xi, γ); γ ∈ Ω } . (1.1)

According to the classical Wilks’ result

L
[

2 log
L(x1, . . . , xn,Ξ)

L(x1, . . . , xn,Ω)

∣∣∣ P γ

]
−→ χ2

k (1.2)

as n → ∞, provided that Ξ ⊂ Rm, γ belongs to Ω = { γ ∈ Ξ; γ1 = 0, . . . ,
. . . , γk = 0 }, log denotes the logarithm to the base e and certain regularity con-
ditions are fulfilled. It is also well-known that (1.2) holds with a more general
hypothesis Ω = {γ ∈ Ξ; g1(γ) = 0, . . . , gk(γ) = 0 } provided that the underlying
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functions possess continuous partial derivatives which form a full rank matrix. The
proof can be found e.g. in Section 6e.3 of [9], on pp. 240 – 242 of [11] or on pp. 156
– 160 of [12].

However, the mentioned results do not cover the variety of the testing problems
when sampling is made from several populations and a hypothesis on the overall
parameter is tested. These multipopulation hypotheses have to be handled from
case to case, because in typical situations sample sizes from individual populations
are not mutually equal and therefore the i.i.d. scheme cannot be employed for
finding the limiting distribution.

The aim of this paper is to provide general assertions of the type (1.2) in the
multipopulation case. Throughout the paper we assume that q ≥ 1 is an arbitrary
but fixed positive integer denoting the number of underlying statistical populations.
The parameter space of overall parameters is the q-fold Cartesian product

Θ = Ξq ,

where in θ = (θ T
1 , . . . , θ

T
q )T ∈ Θ the symbol θj stands for parameter of the jth

population and the superscript T denotes the transpose of the vector. The outcome
of the sampling from the jth population will be denoted by

x(j, nj) = (x
(j)
1 , . . . , x(j)

nj
) . (1.3)

Thus
x(n1,...,nq) =

(
x(1, n1), . . . , x(q, nq)

)
(1.4)

is the pooled sample and its distribution is the product measure

P
(n1,...,nq)
θ = P

(n1)
θ1

× . . .× P
(nq)
θq

, (1.5)

where P
(nj)
θj

is the product measure of nj copies of P θj
.

The asymptotic results of the paper are based on the assumption that

nj −→ +∞ , j = 1, . . . , q. (1.6)

Here it is tacitly assumed that nj = n
(u)
j denotes sample size from the jth population

in the u-th experiment, u = 1, 2, . . ., and the limits in (1.6) are related to u tending
to infinity, but to avoid abundant indexing the index of the order of the experiment
is omitted.

For Ω ⊂ Θ let

L(x(n1,...,nq),Ω) = sup


q∏

j=1

nj∏
i=1

f(x
(j)
i , θj); (θ T

1 , . . . , θ
T
q )T ∈ Ω

 . (1.7)

It will be shown in various settings that under validity of (1.6) the weak convergence

L
[

2 log
L(x(n1,...,nq),Θ)

L(x(n1,...,nq),Ω0)

∣∣∣P (n1,...,nq)
θ

]
−→ χ2

s (1.8)
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or

L
[

2 log
L(x(n1,...,nq),Ω1)

L(x(n1,...,nq),Ω0)

∣∣∣P (n1,...,nq)
θ

]
−→ χ2

s (1.9)

holds, where χ2
s denotes the chi-square distribution with s degrees of freedom.

Methods of the proofs used in this paper are based on the fact, that the logarithm
of the likelihood ratio is asymptotically equivalent to the difference of distances of
the MLE from the hypotheses, which was in the one sample case for hypotheses
sequentially approximable by disjoint cones established in the proof of Theorem 1
in [4]. One of the tools which we use in the proofs is a multipopulation variant of
the Chernoff lemma, presented in Lemma 2.3. Asymptotic distribution of the LR
statistics in the case of linear hypotheses is the topic of Theorem 1.1 and is derived
by means of the weak convergence result presented in Lemma 2.5. A general class of
hypotheses which includes also the hypotheses of order restrictions studied in [13],
is handled in Theorem 1.2. The asymptotic distribution of the LR statistics in the
case of the smooth hypotheses is the topic of Corrolary 1.2 and is derived by means
of the sequential approximation result of Lemma 2.9.

The probability densities will be subjected to the following regularity conditions.

(C 1) Ξ is an open subset of Rm, for each x ∈ X there exist partial derivatives

∂2f(x, γ)

∂γi∂γj

, i, j = 1, . . . ,m

and they are continuous on Ξ.

(C 2) The equalities ∫ ∂2f(x, γ)

∂γi∂γj

dν(x) = 0

hold for all γ ∈ Ξ and i, j = 1, . . . ,m.

(C 3) The function f(., .) is positive on X × Ξ and for each parameter γ ∈ Ξ
there exist a P γ integrable function hγ and a neighbourhood Uγ ⊂ Ξ of the point γ
such that the inequality ∣∣∣∣∣ ∂2 log f(x, γ∗)

∂γ∗i ∂γ
∗
j

∣∣∣∣∣ ≤ hγ(x)

holds for all γ∗ ∈ Uγ, x ∈ X and i, j = 1, . . .m.

(C 4) For every γ ∈ Ξ the function

∂ log f(x, γ)

∂γ
=

(
∂ log f(x, γ)

∂γ1

, . . . ,
∂ log f(x, γ)

∂γm

)T

belongs to L2(P γ) and the matrix

J(γ) =

(
Eγ(

∂ log f(x, γ)

∂γi

∂ log f(x, γ)

∂γj

)

)m

i,j=1

(1.10)
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is positive definite and continuous on Ξ.

(C 5) There exist measurable mappings γ̂n : Xn → Ξ such that for each param-
eter γ ∈ Ξ and every real number ε > 0

lim
n→∞

P
(n)

γ [ L(x1, . . . , xn,Ξ) = L(x1, . . . , xn, γ̂n(x1, . . . , xn)) ] = 1 , (1.11)

lim
n→∞

P
(n)

γ [ ‖γ̂n(x1, . . . , xn)− γ‖ ≥ ε ] = 0 .

We remark that the symbol Eγ in (1.10) relates to the measure P γ.

Theorem 1.1 Suppose that (C 1) - (C 5) and (1.6) hold, and

Ωi = { θ ∈ Θ; Aiθ = bi } ,

where Ai is a ki×mq matrix, rank(Ai) = ki and bi is a vector from Rki. Let θ ∈ Ω0

and for i = 0, 1 there exist measurable mappings θ̃(i)
n1,...,nq

= θ̃(i)
n1,...,nq

(x(n1,...,nq)) of the
argument x(n1,...,nq) taking values in Ωi such that

P
(n1,...,nq)
θ [ L(x(n1,...,nq),Ωi) = L(x(n1,...,nq), θ̃

(i)
n1,...,nq

(x(n1,...,nq)) ) ] −→ 1 (1.12)

and for every ε > 0

P
(n1,...,nq)
θ [ ‖θ̃(i)

n1,...,nq
− θ‖ > ε ] −→ 0 . (1.13)

(I) The weak convergence (1.8) of distributions holds with s = k0.
(II) If Ω0 ⊂ Ω1 and k0 > k1, then the weak convergence (1.9) of distributions

holds with s = k0 − k1.

An immediate application of the previous theorem yields the following assertion.

Corollary 1.1 Let the homogeneity hypotheses

Ω0 = { θ ∈ Θ; µ1 = . . . = µq } , Ω1 = { θ ∈ Θ; µ
(1)
1 = . . . = µ(1)

q } ,

where for the overall parameter θ = (θ T
1 , . . . , θ

T
q )T ∈ Θ either for all j = 1, . . . , q

the equality µj = θj holds, or θj = (µT
j , σ

T
j )T denotes partition of the jth popula-

tion parameter into the subvectors µj ∈ Rp and σj ∈ Rm−p (thus in the first case

dim(µj) = m and in the second case dim(µj) = p). Let µj = (µ
(1) T
j , µ

(2) T
j )T denotes

partition of the subvector µj into the subsubvectors µ
(1)
j ∈ Rp1 and µ

(2)
j ∈ Rdim(µj)−p1.
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Suppose that (C 1) - (C 5) and (1.6) hold and the assumptions of the previous the-

orem concerning θ̃(i)
n1,...,nq

are fulfilled.
(I) The convergence (1.8) holds with s = (q − 1)dim(µj).
(II) The convergence (1.9) holds with s = (q − 1)(dim(µj)− p1).

We remark that if in (C 4) the assumption of continuity of J(γ) on Ξ is omitted
and in (C 2) also the validity of

∫ ∂f(x, γ)

∂γi

dν(x) = 0 , i = 1, . . . ,m (1.14)

is assumed, then all assertions of this paper remain true. However, the present form
of the conditions makes possible to use the local asymptotic normality theory of
Le Cam, Ibragimov and Hasminskii in the form expounded in [2], which simplifies
the proofs of contiguity assertions. We remark that in comparison with [6], the
conditions (C 2), (C 3) are less stringent than their counterparts ( R 2), ( R 3)
ibidem, and no assumption on the Kullback-Leibler information quantity is here
included. In difference from various sets of classical regularity conditions, used for
example in Section 4.4.2 of [12], in Section 6e of [9] or on pp. 88 of [1], the present
conditions (C 1) – (C 5) do not require existence of the third partial derivatives of
the densities. Also, they do not include the integrability of a higher power of partial
derivatives of logarithm of the density, imposed in the condition C in [5].

A deeper insight into limiting behaviour of the test statistic can provide its
asymptotic distribution when the true parameter tends to the null hypothesis, usu-
ally the rate proportional to the square root of the sample size is considered. Such
an approach is for the likelihood ratio test statistics in the one sample case used in
[6] for the hypotheses approximable by disjoint cones, and in [5] for the hypothesis
of nulity of a part of the parameter. Multipopulation versions of these results are
presented in Theorem 1.2 and in Corollary 1.2, the local alternatives are in their
proofs handled by means of contiguity properties.

Following [6] and [4] we shall say that a set Ω ⊂ Θ is at θ ∈ Ω sequentially
approximable by the cone C, if for every sequence {an}∞n=1 of positive numbers which
converges to zero

sup { ρ(θ∗, θ + C); θ∗ ∈ Ω , ‖θ∗ − θ‖ ≤ an } = o(an) ,

sup { ρ(θ + y,Ω); y ∈ C , ‖y‖ ≤ an } = o(an) . (1.15)

Here
‖x‖ = (

∑
i

x2
i )

1/2 , ρ(z, S) = inf { ‖z − y‖; y ∈ S } (1.16)

is the Euclidean distance from the set S, and by the cone C we mean any closed
convex set such that αx ∈ C whenever x ∈ C and the real number α is nonnegative.
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For θ = (θ T
1 , . . . , θ

T
q )T ∈ Θ the block diagonal mq ×mq matrix

J(θ) = diag
(
J(θ1), . . . ,J(θq)

)
(1.17)

denotes the overall Fisher information matrix whose blocks are defined by (1.10),

πj(θ) = πj( (θ T
1 . . . , θ T

q )T ) = θj (1.18)

is projection onto the jth coordinate space and h = (π1(h)
T , . . . , πq(h)

T )T describes
decomposition of the vector h ∈ Rmq into the subvectors from Rm. Finally, the
number

n = n1 + . . .+ nq

denotes the total sample size, i.e., n = n(u) where u is the order number of the
experiment.

Theorem 1.2 Let (C 1) - (C 5) be fulfilled, (1.6) hold and

nj

n
−→ pj ∈ (0, 1〉 , j = 1, . . . , q . (1.19)

Suppose that θ ∈ Θ is a fixed parameter, for i = 0, 1 the set Ωi ⊂ Θ contains θ,
is at θ sequentially approximable by a cone Ci and there exist measurable mappings
θ̃(i)

n1,...,nq
= θ̃(i)

n1,...,nq
(x(n1,...,nq)) of the argument x(n1,...,nq) taking values in Ωi such that

both (1.12) holds and (1.13) is true for every ε > 0. If

lim
u→∞

hu = h ∈ Rmq (1.20)

and the product measure corresponding to the u-th experiment

P ∗ = P ∗u = P
(n

(u)
1 )

γ(1,u) × . . .× P
(n

(u)
q )

γ(q,u) , γ(j, u) = πj(θ) +
πj(hu)√
n

(u)
j

, (1.21)

then

L
[

2 log
L(x(n1,...,nq),Ω1)

L(x(n1,...,nq),Ω0)

∣∣∣P ∗ ] −→L [
ρ2(x,G0)− ρ2(x,G1)

∣∣∣N(J(θ)1/2h , Imq

)]
.

(1.22)

Here ρ is the distance (1.16) from the set Gi = J(θ)1/2D(p)1/2Ci and

D(p)1/2 = diag( p
1/2
1 , . . . , p

1/2
1 , p

1/2
2 , . . . , p

1/2
2 , . . . . . . , p1/2

q , . . . , p1/2
q ) (1.23)

denotes the diagonal mq ×mq matrix with this diagonal. Especially, if C0 ⊂ C1 are
linear spaces, then

L
[

2 log
L(x(n1,...,nq),Ω1)

L(x(n1,...,nq),Ω0)

∣∣∣P ∗ ] −→ χ2
s(λ) , (1.24)
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where s = dim(C1) − dim(C0) and the noncentrality parameter of the chi-square
distribution

λ = ρ2(J(θ)1/2h,G0)− ρ2(J(θ)1/2h,G1) . (1.25)

The previous theorem implies the following assertion, in which C1 denotes the
class of mappings whose components have on their domain all partial derivatives of
the first order continuous. In (1.27) the symbol θt stands for the t-th coordinate of
the vector θ ∈ Rmq.

Corollary 1.2 Suppose that (C 1) - (C 5), (1.6) and (1.19) hold,

Ωi = { θ∗ ∈ Θ; g1(θ
∗) = 0, . . . , gki

(θ∗) = 0 } , (1.26)

and the functions gj : Θ → R1 belong to C1. Further, assume that for i = 0, 1 the
parameter θ belongs to Ωi, the matrix

∂i(θ) =



∂g1(θ)

∂θ1

, . . . ,
∂g1(θ)

∂θmq

...
...

∂gki
(θ)

∂θ1

, . . . ,
∂gki

(θ)

∂θmq


(1.27)

is of rank ki and the assumptions of the previous theorem concerning θ̃(i)
n1,...,nq

are
fulfilled. Let (1.20) hold and P ∗ be the probability defined in (1.21).

(I) The convergence

L
[

2 log
L(x(n1,...,nq),Θ)

L(x(n1,...,nq),Ω0)

∣∣∣P ∗ ] −→ χ2
k0

(λ)

holds with

λ = hTFT
0 (F0J(θ)−1FT

0 )−1F0h , F0 = ∂0(θ)D(p)−1/2 . (1.28)

(II) If k1 < k0 (and therefore Ω0 ⊂ Ω1), then (1.24) holds with s = k0 − k1 and

λ = hT
[
FT

0 (F0J(θ)−1FT
0 )−1F0 − FT

1 (F1J(θ)−1FT
1 )−1F1

]
h , F1 = ∂1(θ)D(p)−1/2.

(III) If for the relative sample sizes the inequality lim infu→∞ n
(u)
j /n(u) > 0 holds

for j = 1, . . . , q and if the vector h = 0, then the results on limiting distributions in
the assertions (I) and (II) are valid with λ = 0 provided that their assumptions with
the exception of (1.19) remain true.
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2. Proofs.

Lemma 2.1 Let (C 1) - (C 4) be fulfilled. Then (1.14) holds and for i , j = 1, . . . ,m

J(γ)ij = −Eγ

(
∂2 logL(x, γ)

∂γi∂γj

)
. (2.1)

Proof. (I) Validity of (1.14) follows from Proposition 1 and the relation (8) on
pp. 13 – 16 in [2], validity of (2.1) immediately follows from (1.14) and (C 2). 2

Since sampling with the sample sizes nj = n
(u)
j is carried out in the sequence of

experiments whose ordering is denoted by u = 1, 2, . . ., for the sake of simplicity the
pooled sample will be denoted by the symbol (cf. (1.4), (1.3))

x(u) = x
(n

(u)
1 ,...,n

(u)
q )

. (2.2)

In accordance with this and (1.5) let

P
(u)
θ = P

(n
(u)
1 ,...,n

(u)
q )

θ . (2.3)

A basic tool for finding stochastic order of the remainder term in the concerned
Taylor expansion will be in this paper the next assertion.

Lemma 2.2 Suppose that (C 1) - (C 4) hold and using the notation (1.1), (1.10)
for γ ∈ Ξ put

d(x1, . . . , xn, γ, δ)

= sup

{ ∣∣∣∣∣ 1n ∂
2 logL(x1, . . . , xn, γ

∗)

∂γ∗i ∂γ
∗
j

+ J(γ)ij

∣∣∣∣∣ ; ‖γ∗ − γ‖ ≤ δ, i, j = 1, . . . ,m

}
.

(2.4)
(I) The function d(., γ, δ) is measurable and for every ε > 0 there exists a real

number δ > 0 such that

lim
n→∞

P
(n)
γ [ d(x1, . . . , xn, γ, δ) ≥ ε] = 0.

(II) If (1.6) holds, θ ∈ Θ and measurable real-valued functions ψu = ψu(x
(u))

converge to zero in the probabilities (2.3), then ( cf. (1.18))

lim
u→∞

P
(u)
θ

[
d(x(j, n

(u)
j ), θj, ψu(x

(u)) ) ≥ ε
]

= 0

for all j = 1, . . . , q and every ε positive.

Proof.
(I) The measurability follows from continuity of the partial derivatives and sep-
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arability of Rm. Let

g(x, γ, δ) = sup


∣∣∣∣∣∣∣
∂2 logL(x, γ∗)

∂γ∗i ∂γ
∗
j

− ∂2 logL(x, γ)

∂γi∂γj

∣∣∣∣∣∣∣ ; ‖γ∗ − γ‖ ≤ δ, i, j = 1, . . . ,m

.
By (C 1), (C 3) and the Lebesgue theorem

lim
δ→0+

∫
g(x, γ, δ) dP γ(x) = 0 ,

and given ε > 0 there is a positive number δ such that Eγ( g(., γ, δ) ) < ε
2
. Employing

the law of large numbers we obtain that for such a number δ

P
(n)
γ [ d(x1, . . . , xn, γ, δ) ≥ ε ]

≤ P
(n)
γ

[
1

n

n∑
i=1

g(xi, γ, δ) ≥
ε

2

]
+ P

(n)
γ

[
d(x1, . . . , xn, γ, 0) ≥ ε

2

]
−→ 0

as n→∞, because (2.1) holds.
(II) Let ε be a fixed positive number. According to (I) there exist positive real

numbers δj and N(j, t) such that

P
(n)
θj

[ d(x1, . . . , xn, θj, δj) ≥ ε ] ≤ 1

t

for all n ≥ N(j, t). Further, since (1.6) holds, given sequences {n(u)
j }∞u=1, j = 1, . . . , q,

there exists an increasing sequence {ut}∞t=1 of positive integers such that for all u ≥ ut

nj = n
(u)
j ≥ N(j, t) , P

(u)
θ [ψu(x

(u)) ≥ δj ] ≤ 1

t
.

Hence P
(u)
θ [ d(x(j, n

(u)
j ), θj, ψu(x

(u))) ≥ ε ] ≤ 2/t for all u ≥ ut. 2

In the next considerations we shall use the notation

B((x1, . . . , xn), γ) =

(
∂2 logL(x1, . . . , xn, γ)

∂γi∂γj

)m

i,j=1

. (2.5)

The matrix

B(x(u), θ) = diag
(
B(x(1, n

(u)
1 ), π1(θ)), . . . ,B(x(q, n(u)

q ), πq(θ))
)

(2.6)

is the mq ×mq block diagonal matrix whose blocks are defined by means of (2.5)
and (1.18). Finally, let

Du = diag(
√
n

(u)
1 , . . . ,

√
n

(u)
1 ,

√
n

(u)
2 , . . . ,

√
n

(u)
2 , . . . . . . ,

√
n

(u)
q , . . . ,

√
n

(u)
q ) (2.7)

denote the diagonal mq ×mq matrix with this diagonal.
The following lemma is a multisample version of Lemma 1 in [4].

585



Lemma 2.3 Suppose that (C 1) - (C 4) and (1.6) hold, θ ∈ Ω ⊂ Θ and measurable
mappings θ̃u = θ̃u(x

(u)) taking values in Ω are such that (cf. (1.7))

lim
u→∞

P
(u)
θ [ L(x(u),Ω) = L(x(u), θ̃u(x

(u)) ) ] = 1 .

Let θ̃u → θ in probabilities (2.3) as u→∞. Then the random vectors

∆u(x(u)) =



√
n

(u)
1 π1

(
θ̃u(x

(u))− θ
)

...

√
n

(u)
q πq

(
θ̃u(x

(u))− θ
)


= Du(θ̃u(x

(u))− θ)

are bounded in probabilities P = P
(u)
θ , i.e., ∆u(x(u)) = Op(1).

Proof. Choose a number δ > 0 such that { θ∗ ∈ Rmq; ‖θ∗ − θ‖ < δ } ⊂ Θ and put

Au = {x(u); L(x(u),Ω) = L(x(u), θ̃u(x
(u)) ) , ‖θ̃u(x

(u))− θ‖ < δ } .

An application of the Taylor theorem yields that for every x(u) ∈ Au

logL(x(u), θ̃u)

= logL(x(u), θ) +
∂ logL(x(u), θ)

∂θ

T

(θ̃u − θ) +
1

2
(θ̃u − θ)TB(x(u), θ∗u)(θ̃u − θ) , (2.8)

where ‖θ∗u − θ‖ ≤ ‖θ̃u − θ‖ and (cf. (1.17))

1

2
(θ̃u − θ)TB(x(u), θ∗u)(θ̃u − θ) = −1

2
∆u(x(u))TJ(θ)∆u(x(u)) + zu(x

(u)) . (2.9)

Making use of the Cauchy-Schwarz inequality and the notation (2.4) we get the
inequality

|zu(x
(u))| ≤ ‖∆u(x(u))‖2Su(x

(u)) ,

Su(x
(u)) =

q∑
j=1

m2d
(
x(j, n

(u)
j ) , πj(θ) , ‖θ̃u − θ‖

)
.

(2.10)

However, Lemma 2.2(II) implies that Su(x
(u)) = oP (1), which together with (2.8) –

(2.10) means that on Au

0 ≤ log
L(x(u), θ̃u)

L(x(u), θ)

≤ ∂ logL(x(u), θ)

∂θ

T

(θ̃u−θ) −
1

2
∆u(x(u))TJ(θ)∆u(x(u)) + ‖∆u(x(u))‖2op(1) . (2.11)
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Finally, let λ stand for the smallest characteristic root of J(θ). Then from (2.11) by
means of (C 4) and the central limit theorem we obtain that on Au

‖∆u(x(u))‖2

(
λ

2
− op(1)

)
≤

∥∥∥∥∥Du
−1∂ logL(x(u), θ)

∂θ

∥∥∥∥∥ ‖∆u(x(u))‖ =

= OP (1)‖∆u(x(u))‖ ,

and since P
(u)
θ (Au) → 1 as u→∞, the rest of the proof is obvious. 2

The statements (2.12), (2.13) of the next corollary are well-known properties
of the maximum likelihood estimators and have been proved under various sets of
conditions. The set of conditions (C 1) – (C 5) differs in some way from currently
used ones, amongst which one can mention the conditions used in [6], [8], in chapter
4 of [12], the conditions in Section 6e.1 in [9] or the ones used on p. 88 in [1]. For
the sake of completeness we therefore prefer to include the proof of the following
corollary into the text.

Corollary 2.1 Suppose that the conditions (C 1) - (C 5) are fulfilled. Then for the
maximum likelihood estimator γ̂n from (C 5) and for every parameter γ ∈ Ξ

√
n( γ̂n(x1, . . . , xn)− γ) = J(γ)−1 1√

n

∂ log L(x1, . . . , xn, γ)

∂γ
+ oP (1) , (2.12)

where P = P
(n)
γ . Hence the weak convergence to the normal distribution

L[
√
n(γ̂n − γ) |P (n)

γ ] → N(0,J(γ)−1 ) (2.13)

holds as n→∞.

Proof. Since γ̂n → γ in probability, the Taylor theorem and (1.11) imply that

with probability P = P
(n)
γ tending to 1

1

n

∂ logL(x1, . . . , xn, γ)

∂γ(i)
=

1

n

m∑
j=1

∂2 logL(x1, . . . , xn, γ
∗
i )

∂γ∗i (j)∂γ
∗
i (i)

(γ(j)− γ̂n(j)) ,

where a(j) denotes the jth coordinate of a and ‖ γ∗i − γ ‖ ≤ ‖ γ̂n − γ ‖. Thus

1

n

∂ logL(x1, . . . , xn, γ)

∂γ
= J(γ)( γ̂n − γ ) + zn(x1, . . . , xn) , (2.14)

‖zn(x1, . . . , xn)‖ ≤ Sn(x1, . . . , xn)‖γ̂n − γ ‖ ,

Sn(x1, . . . , xn) = m2d(x1, . . . , xn, γ, ‖γ̂n − γ‖) ,
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and d is defined in (2.4). But according to Lemma 2.2 and Lemma 2.3

d(x1, . . . , xn, γ, ‖γ̂n − γ‖) = oP (1) ,
√
n( γ̂n(x1, . . . , xn)− γ) = OP (1) ,

and we see that zn(x1, . . . , xn) = oP (n−
1
2 ). The rest of the proof follows from (2.14)

and the central limit theorem. 2

Lemma 2.4 Suppose that the assumptions of Lemma 2.3 are fulfilled, (C 5) holds,
and put

v(z,K) = inf{ |||z − y|||; y ∈ K } , |||x||| =
√
x ′J(θ)x , (2.15)

where J(θ) is the matrix (1.17). Let

θ̂(u) = (θ̂ T

n
(u)
1

, . . . , θ̂ T

n
(u)
q

)T , (2.16)

where θ̂
n

(u)
j

= θ̂
n

(u)
j

(x(j, n
(u)
j )) is the MLE from (C 5).

(I) Let Gu denote the set of those x(u) for which

L(x(u),Ω) = L(x(u), θ̃u(x
(u)) ) , ‖Du( θ̃u(x

(u))− θ )‖ ≤ M̃ , (2.17)

L(x(u),Θ) = L(x(u), θ̂(u)(x
(u)) ) , ‖Du( θ̂(u)(x

(u))− θ )‖ ≤ M , (2.18)

where Du is defined in (2.7) and M̃ , M are fixed positive constants. Then the
relation∣∣∣∣ logL(x(u),Ω)−

[
logL(x(u), θ̂(u))−

1

2
v2
(
Duθ̂(u),DuΩ(u)(M̃)

)] ∣∣∣∣ IGu(x(u)) = oP (1)

(2.19)

holds with P = P
(u)
θ , Ω(u)(M̃) = { θ∗ ∈ Ω; ‖Du(θ∗ − θ)‖ ≤ M̃ } and IGu denoting

the indicator function of this set.

(II) Suppose further that Ω = { θ ∈ Θ; Aθ = b }, A is a k×mq matrix of rank

k, b is a vector from Rk and C = { z ∈ Rmq; Az = 0 }. Then

logL(x(u),Ω)−
[
logL(x(u), θ̂(u))−

1

2
v2(Du(θ̂(u) − θ),DuC)

]
= oP (1) . (2.20)

Proof.
(I) Since the set Θ = Ξq is open, there is a neighbourhood U of the parameter θ

such that U ⊂ Θ. Obviously, Ω(u)(M̃) ⊂ U and θ̂(u)(x
(u)) ∈ U for all x(u) ∈ Gu and

all u sufficiently large. Hence for such an integer u and θ∗ belonging to Ω(u)(M̃) the
Taylor theorem yields that on Gu

logL(x(u), θ∗) = logL(x(u), θ̂(u))−
1

2

[
Du(θ∗ − θ̂(u))

]T
J(θ)

[
Du(θ∗ − θ̂(u))

]
+ zu .

(2.21)
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Here

zu = zu(x
(u)) =

1

2

[
Du(θ∗ − θ̂(u))

]T [
D−1

u B(x(u), θ∗∗)D−1
u + J(θ)

] [
Du(θ∗ − θ̂(u))

]
,

(2.22)
‖θ∗∗ − θ̂(u)‖ ≤ ‖θ∗ − θ̂(u)‖, B is the matrix (2.6) and

‖Du(θ∗ − θ̂(u))‖ ≤ ‖Du(θ∗ − θ)‖+ ‖Du(θ − θ̂(u))‖ ≤ M̃ +M , (2.23)

‖θ∗∗ − θ‖ ≤ ‖θ∗ − θ̂(u)‖+ ‖θ̂(u) − θ‖ ≤ αu = ‖D−1
u ‖(M̃ + 2M) . (2.24)

From (2.22) – (2.24) and Lemma 2.2 one finds out that

|zu| ≤ (M̃ +M)2
q∑

j=1

m2d(x(j, n
(u)
j ), θj, αu) = oP (1) ,

which together with (2.21) and (2.17) implies (2.19).

(II) Obviously, for all u sufficiently large Ω(u)(M̃) = θ + { z ∈ C; ‖Duz‖ ≤ M̃ }
and

v2
(
Duθ̂(u),DuΩ(u)(M̃)

)
= v2

(
Du(θ̂(u) − θ), Ku

)
, (2.25)

where Ku = { z ∈ Rmq; AD−1
u z = 0, ‖z‖ ≤ M̃ }. Let Πu be the matrix of pro-

jection on the linear subspace DuC = { z ∈ Rmq; AD−1
u z = 0 } in the norm |||z|||

from (2.15). Then |||Πuy||| ≤ |||y||| and with λ1 denoting the greatest and λmq the

smallest characteristic root of J(θ) the inequalities√
λmq ‖ΠuDu(θ̂(u) − θ)‖ ≤ |||ΠuDu(θ̂(u) − θ)||| ≤

√
λ1 ‖Du(θ̂(u) − θ)‖

hold. Hence inserting into (2.17) the constant M̃ =
√
λ1/λmq M , we see that on Gu

v2(Du(θ̂(u) − θ), Ku) = v2(Du(θ̂(u) − θ),DuC) . (2.26)

With this choice of M̃ validity of (2.19), (2.25) and (2.26) yields the relation

gu(x
(u))IGu(x(u)) = oP (1) , (2.27)

where gu(x
(u)) denotes the left-hand side of (2.20).

Finally, let ε > 0 be an arbitrary but fixed real number. If δ > 0, then (2.27),
the assumptions on θ̃u, Lemma 2.3 and (C 5) imply that for M > 0 sufficiently large

lim sup
u→∞

P
(u)
θ ( |gu(x

(u))| ≥ ε ) ≤ lim sup
u→∞

[
1− P

(u)
θ (Gu )

]
< δ

and the relation (2.20) is proved. 2
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Lemma 2.5 Let the distributions {L(ξu) }∞u=1 of p-dimensional random vectors con-
verge weakly to the normal distribution N(0, Ip), where Ip is the unit matrix. If
{Wu }∞u=1 are idempotent symmetric p× p matrices and tr(Wu) = s for all u, then

L(ξT
u Wu ξu) −→ χ2

s (2.28)

weakly as u→∞.

Proof. Assume first that for i, j = 1, . . . , p

lim
u→∞

Wu(i, j) = W(i, j) , (2.29)

where W is a real-valued p×p matrix. Then the functions hu(x) = xTWux, h(x) =
xTWx are measurable and since xu → x obviously implies that hu(xu) → h(x),
according to Theorem 5.5 in [3]

L(ξT
u Wu ξu) = L(hu(ξu) ) −→ L(h(x) |N(0, Ip) ) .

Taking into account (2.29) we see that tr(W) = limu→∞ tr(Wu) = s and the matrix
W is symmetric and idempotent. This according to Lemma 9.1.2 on p. 169 in [10]
means that L(xTWx |N(0, Ip) ) = χ2

s and (2.28) in this case holds.
Let us drop validity of the assumption (2.29). Since the matrices {Wu }∞u=1 are

symmetric and idempotent, they are positive semidefinite and for all i, j = 1, . . . , p

0 ≤ Wu(i, i) ≤ tr(Wu) = s , |Wu(i, j)| ≤
√

Wu(i, i)Wu(j, j) ≤ s .

Hence every increasing sequence {uv}∞v=1 of positive integers contains a subsequence
{uvt}∞t=1 such that the matrices {Wuvt

}∞t=1 converge to a real valued p×p matrix W,
and according to the previous part of the proof L(ξ T

uvt
Wuvt

ξuvt
) → χ2

s as t → ∞,

which proves (2.28). 2

P r o o f o f T h e o r e m 1. 1. Making use of (C 5) we obtain that (cf.
(2.16))

logL(x(u),Θ) = logL(x(u), θ̂(u)) + oP (1) ,

where P = P
(u)
θ . This together with (2.20) implies that

2 log
L(x(u),Θ)

L(x(u),Ωi)
= v2(Du(θ̂(u) − θ) , DuCi ) + oP (1) = ρ2(ξu,J(θ)1/2DuCi) + oP (1) ,

where Ci = { z ∈ Rmq; Aiz = 0 }, ρ is the distance (1.16) and ξu =

J(θ)
1
2Du(θ̂(u) − θ). Owing to (1.6) and (2.13)

L( ξu ) → N(0, Imq) (2.30)
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as u → ∞. Since according to the assertion (i) on p. 23 of [9] the matrix Ψ(i)
u of

projection on J(θ)1/2DuCi is symmetric and idempotent,

2 log
L(x(u),Θ)

L(x(u),Ωi)
= ξT

u W(i)
u ξu + oP (1) , (2.31)

W(i)
u = Imq −Ψ(i)

u , tr(Ψ(i)
u ) = dim(J(θ)1/2DuCi) = mq − ki , (2.32)

and the matrix W(i)
u is symmetric and idempotent.

(I) This assertion follows from (2.30) -(2.32) and Lemma 2.5.
(II) By (2.31) and (2.32)

2 log
L(x(u),Ω1)

L(x(u),Ω0)
= ξu

′Wuξu + oP (1) , (2.33)

where Wu = Ψ(1)
u −Ψ(0)

u . But Ω0 ⊂ Ω1 implies that C0 ⊂ C1, which together with

symmetry of the projection matrices leads to the equalities Ψ(1)
u Ψ(0)

u = Ψ(0)
u =

Ψ(0)
u Ψ(1)

u . Thus the matrix Wu is symmetric and idempotent, and the rest of the
proof follows from (2.30), (2.32), (2.33) and Lemma 2.5. 2

In the following text we shall use the concept of contiguity. We recall that a
sequence {Pu}∞u=1 of probabilities is said to be contiguous to propabilities {P ∗u}∞u=1, if
limu→∞ Pu(Au) = 0 whenever limu→∞ P

∗
u (Au) = 0. This is denoted by {Pu} � {P ∗u}

and these sequences of probabilities are said to be contiguous, if both {Pu} � {P ∗u}
and {P ∗u} � {Pu}.

Lemma 2.6 Suppose that (C 1) - (C 4) and (1.6) hold, θ ∈ Θ, limu→∞ hu = h ∈
Rmq, and in accordance with (1.21), (2.3) put Pu = P

(u)
θ .

(I) The probabilities {Pu}∞u=1, {P ∗u}∞u=1 are contiguous.
(II) If also (C 5) holds, then for the maximum likelihood estimate (2.16) and the

matrices (2.7), (1.17)

L[Du(θ̂(u) − θ) |P ∗u ] → N(h,J(θ)−1 ) (2.34)

as u→∞.

Proof. (I) The proof coincides with its one-sample counterpart used for proving
Proposition 3 on p. 17 in [2]. Indeed, let θ(u) = θ + Du

−1hu and

Λ∗u = log
L(x(u), θ)

L(x(u), θ(u))
. (2.35)

Since by the uniform weak convergence of probabilities one understands that inte-
grals of every bounded continuous function converge uniformly, from Proposition 1
on p. 13 in [2] and from (12) – (14) on p. 16 ibidem one easily finds out that

L(Λ∗u |P ∗u ) → N(− σ2

2
, σ2 ) , σ2 = hTJ(θ)h . (2.36)
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This together with Le Cam’s first lemma (cf. [2] p. 499) means that {Pu} � {P ∗u},
the relation {P ∗u} � {Pu} can be proved similarly.

(II) Let

Su(θ) =
(
S

n
(u)
1

(x(1, n
(u)
1 ), π1(θ))

T , . . . , S
n

(u)
q

(x(q, n(u)
q ), πq(θ))

T
)T

,

Sn(x1, . . . , xn, γ) =
1√
n

n∑
i=1

∂ log f(xi, γ)

∂γ

and Λu = −Λ∗u, where Λ∗u is defined in (2.35). According to Proposition 2 on p. 16
of [2]

Λu = hT
uSu(θ)−

1

2
hT

uJ(θ)hu + oP (1) = hTSu(θ)−
σ2

2
+ oP (1) ,

where P = Pu and σ2 is defined in (2.36). This together with (2.12) means that for

a fixed vector g ∈ Rmq and Tu = g TDu(θ̂(u) − θ)(
Tu

Λu

)
=

(
g TJ(θ)−1

hT

)
Su(θ)−

(
0

σ2/2

)
+ oP (1) .

Hence L(Tu |P ∗u ) −→ N(g Th, g TJ(θ)−1g) by Le Cam’s third lemma (cf. p. 503 in
[2] or [7], p. 208), and (2.34) is proved. 2

Lemma 2.7 Suppose that C ⊂ Rp is a cone, limu→∞Mu = M is a regular p × p
matrix, p = mq and v is the distance (2.15).

(I) If limu→∞ yu = y ∈ Rp, then limu→∞ v( yu,MuC) = v( y,MC ).

(II) sup { |v(y,MuC) − v(y,MC)|; y ∈ K } −→ 0 as u → ∞ provided that the

non-empty set K ⊂ Rp is compact.

Proof. (I) Since |v(y,MuC) − v(yu,MuC)| ≤ |||y − yu|||, we may assume that

yu ≡ y. But if Π, Πu denotes projection on MC and MuC respectively, then
Π(y) = Mz, Πu(y) = Muzu where z, zu belong to C. Hence

v(y,MuC) ≤ |||y −Muz||| ≤ v(y,MC) + |||Mz −Muz||| ,

and
lim sup

u→∞
v(y,MuC) ≤ v(y,MC) .

Similarly, v(y,MC) ≤ v(y,MuC) + |||Muzu −Mzu|||. But

|||Muzu −Mzu||| ≤ ‖J(θ)‖1/2||Mu −M|| ‖zu‖ ,

‖zu‖ ≤ ‖
(
J(θ)1/2Mu

)−1
‖ |||Muzu||| ≤ ‖

(
J(θ)1/2Mu

)−1
‖ |||y||| ,
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where the last inequality holds owing to the inequality |||Πu(y)||| ≤ |||y|||, following
from Theorem 8.2.5 on p. 376 of [13]. Thus also the inequality

v(y,MC) ≤ lim inf
u→∞

v(y,MuC)

holds.
(II) Let δu = sup { |v(y,MuC)−v(y,MC)|; y ∈ K }. Since the function v(., A) is

continuous and the set K is compact, there exists a point yu ∈ K with the property
that |v(yu,MuC)− v(yu,MC)| = δu. Choose a subsequence {ut}∞t=1 for which

lim sup
u→∞

δu = lim
t→∞

δut .

Since the set K is compact, there exists a subsubsequence {utn}∞n=1 such that

lim
n→∞

yutn
= y ∈ K ,

and by (I)

lim sup
u→∞

δu = lim
n→∞

|v(yutn
,Mutn

C)− v(yutn
,MC)|

= |v(y,MC)− v(y,MC)| = 0. 2

Lemma 2.8 Under validity of the assumptions of Theorem 1.2

logL(x(u),Ωi)−
[
logL(x(u), θ̂(u))−

1

2
v2
(
Du(θ̂(u) − θ),D(p)1/2Ci

)]
= oP (1) .

(2.37)

Here P = P
(u)
θ , and v, θ̂(u) and the involved matrices are defined in (2.15), (2.16),

(2.7) and (1.23), respectively.

Proof. Let Gu be the set described with (2.17) and (2.18), where Ω = Ωi and

θ̃u = θ̃
(i)

n
(u)
1 ,...,n

(u)
q

. Let ε > 0. By means of Lemma 2.3 we easily obtain that for all

M , M̃ sufficiently large the inequality lim supu→∞

[
1− P

(u)
θ (Gu)

]
< ε holds. Hence

if we show that for the set Ω
(u)
i (M̃) = { θ∗ ∈ Ωi; ‖Du(θ∗ − θ)‖ ≤ M̃ } and for M ,

M̃ sufficiently large∣∣∣v2
(
Duθ̂(u),DuΩ

(u)
i (M̃)

)
− v2

(
Du(θ̂(u) − θ),D(p)1/2Ci

)∣∣∣ IGu(x(u)) = oP (1) ,

(2.38)
then with gu(x

(u)) standing for the left-hand side of (2.37) we get from (2.19) that
for every δ > 0 the inequalities

lim sup
u→∞

P
(u)
θ

[
|gu(x

(u))| ≥ δ
]
≤ lim sup

u→∞

[
1− P

(u)
θ (Gu)

]
< ε
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hold, and (2.37) will be proved.
Let

C
(u)
i (M) = {y ∈ Ci; ‖Duy‖ ≤

√√√√ λ1

λmq

M } ,

where λ1 denotes the largest and λmq the smallest characteristic root of J(θ). Ac-
cording to Theorem 8.2.5 in [13], projection on cone does not enlarge the norm,
therefore on the set Gu the equality

v2
(
Du(θ̂(u) − θ),DuCi

)
= v2

(
Du(θ̂(u) − θ),DuC

(u)

i (M)
)

holds. Since
∣∣∣ |||x|||2 − |||y|||2 ∣∣∣ ≤ ‖x+ y‖ ‖J(θ)‖ ‖x− y‖, for x(u) ∈ Gu

v2
(
Duθ̂(u),DuΩ

(u)
i (M̃)

)
− v2

(
Du(θ̂(u) − θ),DuCi

)
≤ sup

y∈C
(u)
i (M)

inf
θ∗∈Ω

(u)
i (M̃)

‖Du(θ̂(u) − θ∗) + Du(θ̂(u) − θ − y)‖ ‖J(θ)‖ ‖Du(θ + y − θ∗)‖

≤ sup
y∈C

(u)
i (M)

(2M + M̃ +

√√√√ λ1

λmq

M) ‖J(θ)‖ ‖Du‖ ρ( θ + y,Ω
(u)
i (M̃) ) . (2.39)

Put
n(u) = n

(u)
1 + . . .+ n(u)

q .

From (1.19) we obtain that for all u sufficiently large

sup { ‖y‖; y ∈ C (u)
i (M) } ≤ ‖D−1

u ‖

√√√√ λ1

λmq

M ≤ QM√
n(u)

, Q =

 λ1

λmq

q∑
j=1

2m

pj

1/2

.

Hence employing (1.15) we see that for all u sufficiently large the relations

y ∈ C (u)

i (M) , θ∗ ∈ Ωi , ρ(θ + y, θ∗) < ρ(θ + y,Ωi) + 1/n(u)

imply that

‖θ∗ − θ‖ ≤ ‖θ∗ − (θ + y)‖ + ‖y‖ < 3QM√
n(u)

,

‖Du(θ∗ − θ)‖ ≤ ‖Du‖ ‖θ∗ − θ‖ < 3QM
√
m,

and if M̃ > 3QM
√
m, then for y ∈ C

(u)
i (M) the equality ρ(y + θ,Ωi) =

ρ( y+ θ,Ω
(u)
i (M̃) ) holds. This together with (2.39) and the definition of approxima-
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bility means that given M > 0 there exists M̃ > 0 such that for all u sufficiently
large on Gu

v2
(
Duθ̂(u),DuΩ

(u)
i (M̃)

)
− v2

(
Du(θ̂(u) − θ),DuCi

)
≤ o(1) . (2.40)

If u is sufficiently large, then for every θ∗ ∈ Ω
(u)
i (M̃)

‖θ∗ − θ‖ ≤ ‖D−1
u ‖ ‖Du(θ∗ − θ)‖ ≤ QM̃√

n(u)

and the distance ρ(θ∗ − θ, Ci) is attained at a vector y ∈ Ci, for which

‖Duy‖ ≤ ‖Du‖ ‖y‖ ≤ ‖Du‖ ‖θ∗ − θ‖ ≤ QM̃
√
m.

Thus similarly as in (2.39) for all u sufficiently large on Gu

v2
(
Du(θ̂(u) − θ),DuCi

)
− v2

(
Duθ̂(u),DuΩ

(u)
i (M̃)

)
≤ v2

(
Du(θ̂(u) − θ),DuC

(u)
i (QM̃

√
m)

)
− v2

(
Duθ̂(u),DuΩ

(u)
i (M̃)

)
≤ O(1) ‖Du‖ sup

θ∗∈Ω
(u)
i (M̃)

ρ
(
θ∗ − θ , C

(u)
i (QM̃

√
m)

)
= o(1) ,

where the last equality follows from definition of approximability. Hence (2.40) re-
mains true also when the left-hand side is taken with the absolute value. Finally, let
p̂j = n

(u)
j /n(u), j = 1, . . . , q denote relative sample sizes from particular populations.

Then DuCi = D(p̂)1/2Ci, according to Lemma 2.7∣∣∣ v2
(
Du( θ̂(u) − θ ),DuCi

)
− v2

(
Du( θ̂(u) − θ ),D(p)1/2Ci

) ∣∣∣ IGu(x(u)) = oP (1)

and validity of (2.38) is proved. 2

P r o o f o f T h e o r e m 1. 2. By Lemma 2.8,

2 log
L(x(u),Ω1)

L(x(u),Ω0)

= v2
(
Du( θ̂(u) − θ ),D(p)1/2C0

)
− v2

(
Du( θ̂(u) − θ ),D(p)1/2C1

)
+ oP (1)

= ρ2(ξu, G0)− ρ2(ξu, G1) + oP (1) ,

where P = P
(u)
θ and ξu = J(θ)1/2Du( θ̂(u) − θ ). Since the functions ρ2(., Gi) are

continuous, (1.22) follows from Lemma 2.6.
Further, let C0 ⊂ C1 be linear subspaces of Rmq. Then also G0 ⊂ G1 are linear

subspaces and similarly as in the proof of Theorem 1.1(II) one easily finds out that

ρ2(x,G0)− ρ2(x,G1) = xTAx ,
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where the matrix A = Ψ1 −Ψ0 is symmetric, idempotent and Ψi denotes the matrix
of projection on Gi. Hence the assumptions of Theorem 9.2.1 in [10] are in this case
fulfilled with Σ = Imq, µ = J(θ)1/2h, which implies that L(xTAx |N(µ,Σ)) =
χ2

s(λ), where the degrees of freedom s = tr(AΣ) = rank(Ψ1)− rank(Ψ0) = k1 − k0

and the non-centrality parameter λ = µTAµ = ρ2(µ,G0)− ρ2(µ,G1). 2

Proof of the Corollary 1.2 will be based on the following lemma, which probably
does not contain new results, because the involved cones are termed in the literature
as tangent cones. Since the property (1.15) of the sequential approximability was not
previously mentioned in the available literature, we prefer to include the assertion
into the text.

Lemma 2.9 Let Θ ⊂ Rmq be an open set.
(I) Let θ ∈ Ω ⊂ Θ and

Ω ∩W =

{(
x

η(x)

)
; x ∈ V

}
,

where W ⊂ Rmq is an open set containing θ, V ⊂ Rs is an open set, s < mq and
η : V → Rmq−s belongs to C1. Then Ω is at θ sequentially approximable by the cone

C =

 z ∈ Rmq;


zs+1

...
zmq

 = d


z1
...
zs


 , (2.41)

where

d = d [ η ] (ϑ) =



∂η1(ϑ)
∂ϑ1

, . . . , ∂η1(ϑ)
∂ϑs

...
...

∂ηmq−s(ϑ)
∂ϑ1

, . . . , ∂ηmq−s(ϑ)
∂ϑs

 (2.42)

and ϑ = (θ1, . . . , θs)
T consists of the first s coordinates of θ.

(II) If the matrix (1.27) is of rank ki and its elements are functions continuous
on Θ, then the set (1.26) is at θ sequentially approximable by the cone

Ci = { y ∈ Rmq; ∂i(θ)y = 0 } . (2.43)

Proof. (I) The proof can be easily carried out by means of the definition of
differentiable real-valued function.

(II) Since it is only a matter of notation, we may assume that the last ki columns
of (1.27) are linearly independent. Since g = (g1, . . . , gki

)T belongs to C1 and g(θ) =
0, from theorem on implicit functions one obtains that there exist a neighbourhood
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U ⊂ Rmq−ki of (θ1, . . . , θmq−ki
)T , a neighbourhood V ⊂ Rki of (θmq−ki+1, . . . , θmq)

T

and a mapping η : U → V belonging to C1 such that

W = { (xT , yT )T ; x ∈ U , y ∈ V }

is a subset of Θ, for every x ∈ U the only point y ∈ V satisfying g( (xT , yT )T ) = 0
is y = η(x) and the matrix (2.42) has for every ϑ ∈ U the form

d [ η ] (ϑ) = −
[
D

(
ϑ

η(ϑ)

)]−1

H

(
ϑ

η(ϑ)

)
. (2.44)

Here s = mq−ki and ∂i(θ) = (H(θ)D(θ) ) is the partition of the matrix (1.27) into
the blocks determined by the last ki columns. Thus

Ωi ∩W =

{(
x

η(x)

)
; x ∈ U

}

and (2.44) means that the cone (2.43) equals (2.41). 2

P r o o f o f C o r o l l a r y 1. 2. The approximating cone C0 in this case
equals (2.43) with i = 0, and putting Ω1 = Θ, C1 = Rmq we see that (1.24) holds
with s = mq − (mq − k0),

λ = ρ2(J(θ)1/2h,G0) , G0 = { z ∈ Rmq; Az = 0 } , A = F0J(θ)−1/2 .

Since ρ2(x,G0) = xTAT (AAT )−1Ax, validity of (I) is proved. The assertion (II)
can be proved similarly and validity of (III) is obvious. 2
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